cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239097 Decimal expansion of -(gamma-log(2))/2.

Original entry on oeis.org

0, 5, 7, 9, 6, 5, 7, 5, 7, 8, 2, 9, 2, 0, 6, 2, 2, 4, 4, 0, 5, 3, 6, 0, 0, 1, 5, 6, 8, 7, 8, 8, 7, 0, 6, 8, 5, 1, 6, 6, 7, 0, 3, 9, 9, 2, 1, 0, 1, 6, 5, 8, 2, 7, 6, 5, 7, 4, 5, 6, 3, 8, 7, 3, 0, 4, 2, 6, 2, 9, 4, 7, 5, 9, 6, 0, 1, 5, 0, 2, 2, 3, 3, 4, 4, 5, 8, 1, 3, 1, 8, 5, 2, 3, 3, 5, 9, 6, 9, 0, 1, 3, 6, 8, 5, 0, 1, 6, 8, 8, 5, 3, 8, 1, 8, 0, 1, 6, 2, 6, 3, 6, 2, 5, 0, 8, 1, 1, 0, 6, 3, 5, 7, 9
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2014

Keywords

Comments

Decimal expansion of the generalized Euler constant -gamma(0,2).

Examples

			.057965757829206224405360015687887068516670399210165827657456...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField();
    (Log(2) - EulerGamma(R))/2; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[(Log[2] - EulerGamma)/2, 10, 100][[1]]] (* G. C. Greubel, Aug 28 2018 *)
  • PARI
    (log(2)-Euler)/2 \\ Charles R Greathouse IV, Mar 25 2014
    

Formula

From Amiram Eldar, Jun 30 2020: (Start)
Equals Sum_{k>=1} zeta(2*k+1)/((2*k+1)*2^(2*k+1)).
Equals Sum_{k>=1} arctanh(1/(2*k)) - 1/(2*k). (End)