cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239117 Number of ballot sequences of length n with exactly 6 fixed points.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 3, 9, 29, 99, 357, 1350, 5334, 21912, 93352, 410988, 1866492, 8720924, 41866020, 206085480, 1039120104, 5358418224, 28235017104, 151838491408, 832730775888, 4652886489840, 26470731088016, 153207256585824, 901628675631456, 5391563546317056
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 10 2014

Keywords

Comments

The fixed points are in the first 6 positions.
Also the number of standard Young tableaux with n cells such that the first column contains 1, 2, ..., 6, but not 7. An alternate definition uses the first row.

Examples

			a(6) = 1: [1,2,3,4,5,6].
a(7) = 1: [1,2,3,4,5,6,1].
a(8) = 3: [1,2,3,4,5,6,1,1], [1,2,3,4,5,6,1,2], [1,2,3,4,5,6,1,7].
a(9) = 9: [1,2,3,4,5,6,1,1,1], [1,2,3,4,5,6,1,1,2], [1,2,3,4,5,6,1,1,7], [1,2,3,4,5,6,1,2,1], [1,2,3,4,5,6,1,2,3], [1,2,3,4,5,6,1,2,7], [1,2,3,4,5,6,1,7,1], [1,2,3,4,5,6,1,7,2], [1,2,3,4,5,6,1,7,8].
		

Crossrefs

Column k=6 of A238802.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [1,1,3][n+1],
          ((114*n^3 -68193*n^2 +266129*n -764878)*b(n-1)
           +(2513*n^4 +25106*n^3 +330108*n^2 -382379*n +208440)*b(n-2)
           +(n-3)*(2399*n^3 +95128*n^2 +269793*n +65880)*b(n-3))/
           (2513*n^3+10142*n^2+201063*n-630958))
        end:
    a:=n-> `if`(n<6, 0, b(n-6)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 6, 1, b[n - 7, {2, 1, 1, 1, 1, 1}]]; a[n_ /; n < 6] = 0; Table[ Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)

Formula

See Maple program.
Recurrence (for n>=8): (n-7)*(n^6 - 28*n^5 + 350*n^4 - 3850*n^3 + 37569*n^2 - 201082*n + 556800)*a(n) = (n^7 - 35*n^6 + 441*n^5 - 3220*n^4 + 31444*n^3 - 314265*n^2 + 1921954*n - 5066880)*a(n-1) + (n-8)*(n-6)*(n^6 - 22*n^5 + 225*n^4 - 2710*n^3 + 27854*n^2 - 136228*n + 389760)*a(n-2). - Vaclav Kotesovec, Mar 11 2014
a(n) ~ sqrt(2)/1680 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1+7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 11 2014