A239118 Number of ballot sequences of length n with exactly 7 fixed points.
0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 9, 29, 99, 357, 1351, 5342, 21983, 93823, 414198, 1886424, 8846390, 42628782, 210773592, 1067599984, 5533263752, 29307314408, 158484944416, 874103230896, 4913196556800, 28120097476640, 163770757573776, 969858742317600
Offset: 0
Examples
a(7) = 1: [1,2,3,4,5,6,7]. a(8) = 1: [1,2,3,4,5,6,7,1]. a(9) = 3: [1,2,3,4,5,6,7,1,1], [1,2,3,4,5,6,7,1,2], [1,2,3,4,5,6,7,1,8]. a(10) = 9: [1,2,3,4,5,6,7,1,1,1], [1,2,3,4,5,6,7,1,1,2], [1,2,3,4,5,6,7,1,1,8], [1,2,3,4,5,6,7,1,2,1], [1,2,3,4,5,6,7,1,2,3], [1,2,3,4,5,6,7,1,2,8], [1,2,3,4,5,6,7,1,8,1], [1,2,3,4,5,6,7,1,8,2], [1,2,3,4,5,6,7,1,8,9].
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..800
- Wikipedia, Young tableau
Crossrefs
Column k=7 of A238802.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<4, [1, 1, 3, 9][n+1], ((41*n^2 +82925*n -562776)*b(n-1) +(174*n^3 +63287*n^2 -447840*n +352440) *b(n-2) +(133*n^3 -81472*n^2 +363510*n -267096) *b(n-3) -(n-4)*(30661*n^2 -93002*n -90720) *b(n-4))/ (174*n^2+31449*n-246768)) end: a:=n-> `if`(n<7, 0, b(n-7)): seq(a(n), n=0..40);
-
Mathematica
b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 7, 1, b[n - 8, {2, 1, 1, 1, 1, 1, 1}]]; a[n_ /; n < 7] = 0; Table[ Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
Formula
See Maple program.
Recurrence (for n>=9): (n-8)*(n^7 - 36*n^6 + 706*n^5 - 13080*n^4 + 177169*n^3 - 1264884*n^2 + 3776364*n - 9605520)*a(n) = (n^8 - 44*n^7 + 802*n^6 - 12104*n^5 + 206449*n^4 - 2516636*n^3 + 16735788*n^2 - 68051376*n + 170709120)*a(n-1) + (n-9)*(n-7)*(n^7 - 29*n^6 + 511*n^5 - 10055*n^4 + 131224*n^3 - 805316*n^2 + 1729104*n - 6929280)*a(n-2). - Vaclav Kotesovec, Mar 11 2014
a(n) ~ sqrt(2)/11520 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1+7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 11 2014
Comments