A239119 Number of ballot sequences of length n with exactly 8 fixed points.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 9, 29, 99, 357, 1351, 5343, 21992, 93912, 414848, 1891264, 8878972, 42849860, 212214460, 1077052284, 5594301872, 29704267536, 161055535088, 890880956848, 5022885935600, 28843306388880, 168562494708400, 1001888980299056
Offset: 0
Keywords
Examples
a(8) = 1: [1,2,3,4,5,6,7,8]. a(9) = 1: [1,2,3,4,5,6,7,8,1]. a(10) = 3: [1,2,3,4,5,6,7,8,1,1], [1,2,3,4,5,6,7,8,1,2], [1,2,3,4,5,6,7,8,1,9]. a(11) = 9: [1,2,3,4,5,6,7,8,1,1,1], [1,2,3,4,5,6,7,8,1,1,2], [1,2,3,4,5,6,7,8,1,1,9], [1,2,3,4,5,6,7,8,1,2,1], [1,2,3,4,5,6,7,8,1,2,3], [1,2,3,4,5,6,7,8,1,2,9], [1,2,3,4,5,6,7,8,1,9,1], [1,2,3,4,5,6,7,8,1,9,2], [1,2,3,4,5,6,7,8,1,9,10].
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..800
- Wikipedia, Young tableau
Crossrefs
Column k=8 of A238802.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<3, [1, 1, 3][n+1], ((78*n^4 -18395*n^3 -71700*n^2 +536111*n -6824556)*b(n-1) +(203*n^5 +3335*n^4 +113400*n^3 +811949*n^2 -2733405*n +5461380)*b(n-2) +(n-3)*(125*n^4 +21309*n^3 +273479*n^2 +556667*n +1829700)*b(n-3)) / (203*n^4+1789*n^3+80693*n^2+377071*n-3156156)) end: a:=n-> `if`(n<8, 0, b(n-8)): seq(a(n), n=0..40);
-
Mathematica
b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 8, 1, b[n - 9, {2, 1, 1, 1, 1, 1, 1, 1}]]; a[n_ /; n < 8] = 0; Table[ Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
Formula
See Maple program.
Recurrence (for n>=10): (n-9)*(n^8 - 45*n^7 + 1302*n^6 - 34146*n^5 + 562989*n^4 - 4387005*n^3 + 7242668*n^2 + 80535276*n + 148594320)*a(n) = (n^9 - 54*n^8 + 1392*n^7 - 33705*n^6 + 734286*n^5 - 9696141*n^4 + 60317333*n^3 - 48716460*n^2 - 234532332*n - 4007057040)*a(n-1) + (n-10)*(n-8)*(n^8 - 37*n^7 + 1015*n^6 - 27223*n^5 + 410284*n^4 - 2451988*n^3 - 2863260*n^2 + 83948328*n + 232515360)*a(n-2). - Vaclav Kotesovec, Mar 11 2014
a(n) ~ sqrt(2)/90720 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1+7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 11 2014
Comments