cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239129 a(n) = 18*n - 1, n >= 1, the second column of triangle A239127 related to the Collatz problem.

Original entry on oeis.org

17, 35, 53, 71, 89, 107, 125, 143, 161, 179, 197, 215, 233, 251, 269, 287, 305, 323, 341, 359, 377, 395, 413, 431, 449, 467, 485, 503, 521, 539, 557, 575, 593, 611, 629, 647, 665, 683, 701, 719, 737, 755, 773, 791, 809, 827, 845, 863, 881, 899, 917, 935, 953, 971
Offset: 1

Views

Author

Wolfdieter Lang, Mar 13 2014

Keywords

Comments

This sequence gives all ending values a(n) (in increasing order) of Collatz sequences of length 5 following the pattern (ud)^2, with u (for `up'), mapping an odd number m to 3*m+1, and d (for `down'), mapping an even number m to m/2. The last entry of this sequence is required to be odd. The first entry is also odd and is given by M(2,n) = 8*n-1 from the array A239126.
This appears as N in Example 2.2. for x=y = 2 in the M. Trümper paper on p. 7, given as a link below.

Examples

			a(1) = 17 because the Collatz sequence for M(2,1) = 8*1 - 1 = 7 from A239126 is [7, 22, 11, 34, 17] ending in the odd number 17.
a(4) = 71 with the Collatz sequence of length 5 starting with M(2,4) = 31 given by [31, 94, 47, 142, 71], ending in a(4).
		

Crossrefs

Cf. A016969 (first column), A239126, A239127.

Programs

  • Mathematica
    CoefficientList[Series[(x + 17)/(1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)

Formula

a(n) = 18*n - 1 for n >= 1.
O.g.f.: x*(x+17)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: exp(x)*(18*x - 1) + 1.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)