A239129 a(n) = 18*n - 1, n >= 1, the second column of triangle A239127 related to the Collatz problem.
17, 35, 53, 71, 89, 107, 125, 143, 161, 179, 197, 215, 233, 251, 269, 287, 305, 323, 341, 359, 377, 395, 413, 431, 449, 467, 485, 503, 521, 539, 557, 575, 593, 611, 629, 647, 665, 683, 701, 719, 737, 755, 773, 791, 809, 827, 845, 863, 881, 899, 917, 935, 953, 971
Offset: 1
Examples
a(1) = 17 because the Collatz sequence for M(2,1) = 8*1 - 1 = 7 from A239126 is [7, 22, 11, 34, 17] ending in the odd number 17. a(4) = 71 with the Collatz sequence of length 5 starting with M(2,4) = 31 given by [31, 94, 47, 142, 71], ending in a(4).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Collatz' Words, Sequences, and Trees, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
- Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
CoefficientList[Series[(x + 17)/(1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)
Formula
a(n) = 18*n - 1 for n >= 1.
O.g.f.: x*(x+17)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: exp(x)*(18*x - 1) + 1.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)
Comments