A239142 Number of strict partitions of n having standard deviation sigma > 1.
0, 0, 0, 0, 1, 1, 3, 4, 5, 8, 10, 12, 16, 20, 24, 30, 36, 43, 52, 62, 73, 87, 102, 119, 140, 163, 189, 220, 254, 293, 338, 388, 445, 510, 583, 665, 758, 862, 979, 1111, 1258, 1423, 1608, 1814, 2045, 2302, 2588, 2907, 3262, 3656, 4094, 4580, 5118, 5715, 6376
Offset: 1
Examples
The standard deviations of the strict partitions of 9 are 0., 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 5.
Programs
-
Mathematica
z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]] Table[Count[g[n], p_ /; s[p] < 1], {n, z}] (* A239140 *) Table[Count[g[n], p_ /; s[p] <= 1], {n, z}] (* A239141 *) Table[Count[g[n], p_ /; s[p] == 1], {n, z}] (* periodic 01 *) Table[Count[g[n], p_ /; s[p] > 1], {n, z}] (* A239142 *) Table[Count[g[n], p_ /; s[p] >= 1], {n, z}] (* A239143 *) t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]] ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*) (* Peter J. C. Moses, Mar 03 2014 *)
Formula
G.f.: Product_{m>=1} (1+x^m) -1 +(x^5+x^4+x^3+2*x^2+x+1)*x / ((x-1)*(x^2+x+1)). - Alois P. Heinz, Mar 14 2014
Comments