A239145 Number T(n,k) of self-inverse permutations p on [n] where the minimal transposition distance equals k (k=0 for the identity permutation); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 13, 8, 3, 1, 0, 1, 39, 22, 10, 3, 1, 0, 1, 120, 65, 32, 10, 3, 1, 0, 1, 401, 208, 103, 37, 10, 3, 1, 0, 1, 1385, 703, 344, 136, 37, 10, 3, 1, 0, 1, 5069, 2517, 1206, 501, 151, 37, 10, 3, 1, 0, 1, 19170, 9390, 4421, 1890, 622, 151, 37, 10, 3, 1, 0
Offset: 0
Examples
T(4,0) = 1: 1234. T(4,1) = 5: 1243, 1324, 2134, 2143, 4321. T(4,2) = 3: 1432, 3214, 3412. T(4,3) = 1: 4231. Triangle T(n,k) begins: 00: 1; 01: 1, 0; 02: 1, 1, 0; 03: 1, 2, 1, 0; 04: 1, 5, 3, 1, 0; 05: 1, 13, 8, 3, 1, 0; 06: 1, 39, 22, 10, 3, 1, 0; 07: 1, 120, 65, 32, 10, 3, 1, 0; 08: 1, 401, 208, 103, 37, 10, 3, 1, 0; 09: 1, 1385, 703, 344, 136, 37, 10, 3, 1, 0; 10: 1, 5069, 2517, 1206, 501, 151, 37, 10, 3, 1, 0;
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..30, flattened
Programs
-
Maple
b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s, b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0, b(n-1, k, s union {i})), i=1..n-k-1))) end: T:= (n, k)-> `if`(k=0, 1, b(n, k-1, {})-b(n, k, {})): seq(seq(T(n, k), k=0..n), n=0..14);
-
Mathematica
b[n_, k_, s_List] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, s ~Complement~ {n}], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, 1, n - k - 1}]]] ; T[n_, k_] := If[k == 0, 1, b[n, k-1, {}] - b[n, k, {}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 22 2015, after Maple *)
Comments