A239146 Smallest k>0 such that n +/- k and n^2 +/- k are all prime. a(n) = 0 if no such number exists.
0, 0, 0, 0, 0, 0, 0, 3, 2, 3, 0, 5, 0, 3, 2, 0, 0, 13, 12, 0, 2, 0, 0, 0, 6, 15, 10, 0, 12, 0, 0, 15, 20, 0, 12, 5, 0, 15, 22, 21, 12, 0, 0, 0, 14, 27, 0, 35, 0, 0, 8, 15, 0, 0, 24, 27, 0, 0, 48, 7, 48, 0, 50, 3, 6, 7, 0, 0, 28, 0, 18, 0, 0, 27, 34
Offset: 1
Keywords
Examples
8 +/- 1 (7 and 9) and 8^2 +/- 1 (63 and 65) are not all prime. 8 +/- 2 (6 and 10) and 8^2 +/- 2 (62 and 66) are not all prime. However, 8 +/- 3 (5 and 11) and 8^2 +/- 3 (61 and 67) are all prime. Thus, a(8) = 3.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A239146 := proc(n) local k ; for k from 1 do if n-k <= 1 then return 0; end if; if isprime(n+k) and isprime(n-k) and isprime(n^2+k) and isprime(n^2-k) then return k; end if; end do; end proc: seq(A239146(n),n=1..80) ; # R. J. Mathar, Mar 12 2014
-
Mathematica
a[n_] := Catch@ Block[{k = 1}, While[k < n, And @@ PrimeQ@ {n+k, n-k, n^2+k, n^2-k} && Throw@k; k++]; 0]; Array[a, 75] (* Giovanni Resta, Mar 13 2014 *)
-
Python
import sympy from sympy import isprime def c(n): for k in range(1,n): if isprime(n+k) and isprime(n-k) and isprime(n**2+k) and isprime(n**2-k): return k n = 1 while n < 100: if c(n) == None: print(0) else: print(c(n)) n += 1
Comments