cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239201 Expansion of -(x * sqrt(5*x^2 -6*x +1) -2*x^3 +3*x^2 -x) / ((3*x^2 -4*x +1) * sqrt(5*x^2 -6*x +1) +5*x^3 -11*x^2 +7*x -1).

Original entry on oeis.org

2, 5, 17, 68, 293, 1310, 5984, 27725, 129773, 612158, 2905322, 13857035, 66361892, 318901523, 1536964313, 7426185908, 35960185373, 174468439958, 847920579938, 4127211830363, 20116566452918, 98172213841553, 479635277636543, 2345731259059238, 11482918774964588, 56260052353307435, 275862429353287079, 1353641461527506630
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 12 2014

Keywords

Crossrefs

Cf. A007317.

Programs

  • Maxima
    a(n):=sum(binomial(n-1,n-k)*sum(binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+2*k+i)*(-1)^(n-k-i),i,0,n-k),k,1,n);
    
  • PARI
    x='x+O('x^66); G=(sqrt(5*x^2-6*x+1)+x-1)/(2*x-2); Vec(G' * (x * G - x^2 ) / G^2) \\ Joerg Arndt, Mar 12 2014

Formula

G.f. A(x) = G'(x)*(x*G(x)-x^2)/G(x)^2, where G(x) = A007317(x) = (sqrt(5*x^2-6*x+1)+x-1)/(2*x-2).
a(n) = [x^n] (F(x)^n-F(x)^(n-1)), where F(x) = (x^2-x-1)/(x-1).
a(n) = sum(k=1..n, binomial(n-1,n-k)*sum(i=0..n-k, binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+2*k+i)*(-1)^(n-k-i))), n>0.
Conjecture D-finite with recurrence: (-n+1)*a(n) +(7*n-11)*a(n-1) +(-11*n+25)*a(n-2) +5*(n-3)*a(n-3)=0. - R. J. Mathar, Oct 07 2016
a(n) ~ 3 * 5^(n - 1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 19 2021