A239073 Given a circle of radius R into which small circles of radius R/2^n are packed in a "hexagonal pattern" (see Comments), a(n) is the maximum number of small circles.
1, 2, 10, 48, 208, 874, 3600, 14622, 58976, 236824, 949094, 3800126, 15207812, 60846154, 243414326, 973716670, 3894985588, 15580180122, 62321195992, 249285735518, 997144844044, 3988583179554, 15954340324098, 63817376508852, 255269536476262
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
- Kival Ngaokrajang, Small Basic program
Programs
-
Magma
for n in [0..25] do x:=(2^n - 1)^2; c:=2^n; // for row i=0 for i in [1..Isqrt(x div 3)] do t:=x-3*i*i; if IsOdd(i) then c:=c+2*(2*Floor(Sqrt(t)/2)+1); else c:=c+2*(2*Floor(Sqrt(t)/2+1/2)); end if; end for; n, c; end for; // Jon E. Schoenfield, Mar 17 2014
Formula
a(n) = 2^n + 2 * Sum_{i odd, <= iMax} (2*floor(sqrt(x - 3 * i^2) / 2) + 1) + 2 * Sum_{i even, 0 < i <= iMax} 2*floor(sqrt(x - 3 * i^2) / 2 + 1/2) where x = (2^n-1)^2 and iMax = floor(sqrt(x/3)). - Jon E. Schoenfield, Mar 17, Mar 23 2014
Extensions
a(20) - a(24) and corrections to a(15), a(17), and a(18) from Jon E. Schoenfield, Mar 17 2014
Comments