cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239230 Expansion of -x*log'(-sqrt(12*x+2*sqrt(1-4*x)+2)/4+sqrt(1-4*x)/4+5/4).

Original entry on oeis.org

0, 1, 1, 4, 9, 36, 112, 428, 1505, 5692, 21026, 79806, 301488, 1151866, 4403778, 16929474, 65204353, 251947668, 975366094, 3784197606, 14705937794, 57242631464, 223121176224, 870805992278, 3402485053664, 13308485156086, 52104519751272, 204176144516818
Offset: 0

Views

Author

Vladimir Kruchinin, May 22 2014

Keywords

Crossrefs

Cf. A055113.

Programs

  • Maple
    a:= n-> add((-1)^(k+n)*binomial(2*n-k-1, n-1)*hypergeom([k-n, (n+1)/2, n/2], [n, n+1], 4), k=1..n);
    seq(round(evalf(a(n), 32)), n=0..24); # Peter Luschny, May 22 2014
  • Maxima
    a(n):=n*sum(sum(binomial(n+2*j-1,j+n-1)*(-1)^(k+j+n)*binomial(2*n-k,j+n), j,0,n-k)/(2*n-k), k,1,n);

Formula

G.f.: A(x) = x*F'(x)/(1-F(x)), where F(x) is g.f. of A055113.
a(n) = n * Sum_{k=1..n} (Sum_{j=0..n-k} C(n+2*j-1,j+n-1) * (-1)^(k+j+n) * C(2*n-k,j+n)) / (2*n-k).
a(n) = Sum_{k=1..n} (-1)^(k+n) * C(2*n-k-1,n-1) * hypergeom([k-n, n/2+1/2, n/2], [n, n+1], 4). - Peter Luschny, May 22 2014
Conjecture D-finite with recurrence +24*(365025561*n-1672569283)*(n-1)*(n-2)*(2*n-1)*a(n) -4*(n-2)*(27129169947*n^3-209577621466*n^2+463278020461*n-314084557758)*a(n-1) +2*(-28823853823*n^4+487259692534*n^3-3105214937957*n^2+8814274338098*n-9143920331436)*a(n-2) +4*(276083065830*n^4-4172118623320*n^3+24824880820695*n^2-69263721795041*n+75832154222148)*a(n-3) +(-587491214125*n^4+9941738070620*n^3-75070680472775*n^2+281912285021344*n-413197788157152)*a(n-4) +2*(-1186924847911*n^4+26108844767699*n^3-211936472383904*n^2+757584729548632*n-1009721693733312)*a(n-5) +4*(2*n-11)*(328530544924*n^3-5280431217363*n^2+28334632524947*n-50473913356356)*a(n-6) -72*(4143100547*n-18456753180)*(n-6)*(2*n-11)*(2*n-13)*a(n-7)=0. - R. J. Mathar, Jul 27 2022
Conjecture: a(n) = Sum_{i=0..n-1} A059260(2*(n-1),n+i-1)*A009766(n+i-1,i)*(-1)^(n+i-1) = n*Sum_{i=0..n-1} binomial(n+2*i, i)/(n+2*i)*(-1)^(n+i-1)*[x^(n+i-1)] (1+(x+1)^(2*n-1))/(x+2) for n >= 0. - Mikhail Kurkov, Feb 18 2025