cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239242 Number of partitions of n into distinct parts for which (number of odd parts) > (number of even parts).

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 1, 4, 2, 6, 3, 9, 5, 12, 9, 17, 14, 22, 22, 29, 33, 38, 48, 50, 68, 65, 95, 86, 128, 113, 172, 149, 226, 197, 295, 260, 379, 342, 485, 449, 613, 587, 773, 762, 967, 987, 1206, 1269, 1497, 1623, 1855, 2063, 2289, 2610, 2823, 3280, 3471
Offset: 0

Views

Author

Clark Kimberling, Mar 13 2014

Keywords

Comments

a(n) = Sum_{k>=1} A240021(n,k). - Alois P. Heinz, Apr 02 2014

Examples

			a(8) = 4 counts these partitions:  71, 53, 521, 431.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, `if`(t>0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
          b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
    Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] < Count[#, ?EvenQ] &]], {n, 0, z}] (* A239239 *)
    Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] <= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239240 *)
    Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] == Count[#, ?EvenQ] &]], {n, 0, z}] (* A239241 *)
    Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] > Count[#, ?EvenQ] &]], {n, 0, z}] (* A239242 *)
    Table[g[Select[Select[p[n], d[#] == # &], Count[#, ?OddQ] >= Count[#, ?EvenQ] &]], {n, 0, z}] (* A239243 *)
    (* Peter J. C. Moses, Mar 10 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t>0, 1, 0], b[n, i-1, t]+If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) + A239240(n) = A000009(n) for n >=1.