A239265 Number of domicule tilings of a 3 X 2n grid.
1, 5, 43, 451, 4945, 54685, 605707, 6710971, 74358721, 823915861, 9129240139, 101154812563, 1120826772817, 12419109262381, 137607593744107, 1524734943844939, 16894537473570817, 187196730554444581, 2074198005431257579, 22982759116542299875
Offset: 0
Examples
a(1) = 5: +---+ +---+ +---+ +---+ +---+ |o o| |o o| |o-o| |o-o| |o-o| | X | || || | | | | | | |o o| |o o| |o-o| |o o| |o o| | | | | | | || || | X | |o-o| |o-o| |o-o| |o o| |o o| +---+ +---+ +---+ +---+ +---+.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..950
- Index entries for linear recurrences with constant coefficients, signature (13,-21,-3).
Crossrefs
Even bisection of column k=3 of A239264.
Programs
-
Maple
gf:= -(x^2+8*x-1)/(3*x^3+21*x^2-13*x+1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..30);
Formula
G.f.: -(x^2+8*x-1)/(3*x^3+21*x^2-13*x+1).
Comments