A239342 Number of 1's in all compositions of n into odd parts.
0, 1, 2, 3, 6, 11, 20, 36, 64, 113, 198, 345, 598, 1032, 1774, 3039, 5190, 8839, 15016, 25452, 43052, 72685, 122502, 206133, 346346, 581136, 973850, 1630011, 2725254, 4551683, 7594748, 12660660, 21087448, 35094377, 58360134, 96979089, 161042110, 267248664
Offset: 0
Keywords
Examples
a(5) = 11 because in the compositions of 5 into odd parts there are a total of 11 1's: 5, 3+1+1, 1+3+1, 1+1+3, 1+1+1+1+1. Let r represent the red square and 1,3,5 represent the possible odd lengths of the white squares for n=5. Then a(5+1) = a(6) = 20 because r combined with a tile of length 5 generates 2 compositions; r combined with 3,1,1 generates 12 compositions; and r combined with 1,1,1,1,1 generates 6 compositions. 2+12+6 = 20. - _Gregory L. Simay_, Aug 14 2016
References
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2010, page 70.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..4771
- Mengmeng Liu, Andrew Yezhou Wang, The Number of Designated Parts in Compositions with Restricted Parts, J. Int. Seq., Vol. 23 (2020), Article 20.1.8.
Programs
-
Mathematica
nn=30;CoefficientList[Series[x (1-x^2)^2/(1-x-x^2)^2,{x,0,nn}],x] (* or *) Table[Count[Flatten[Level[Map[Permutations,IntegerPartitions[n,n,Table[2k+1,{k,0,n/2}]]],{2}]],1],{n,0,30}]
Formula
For n >= 4, a(n) = a(n-1) + a(n-2) + A000045(n-2).
G.f.: x*(1 - x^2)^2/(1 - x - x^2)^2.
Comments