cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239364 Numbers n such that (n^2-4)/10 is a square.

Original entry on oeis.org

38, 1442, 54758, 2079362, 78960998, 2998438562, 113861704358, 4323746327042, 164188498723238, 6234839205156002, 236759701297204838, 8990633810088627842, 341407325082070653158, 12964487719308596192162, 492309126008644584648998, 18694782300609185620469762
Offset: 1

Views

Author

Colin Barker, Mar 17 2014

Keywords

Comments

Values of x satisfying the Pellian equation x^2 - 10*y^2 = 4.

Examples

			1442 is in the sequence because (1442^2-4)/10 = 207936 = 456^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{38,-1},{38,1442},30] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    Vec(-2*x*(x-19)/(x^2-38*x+1) + O(x^100))

Formula

a(n) = 2*A078986(n).
a(n) = (19+6*sqrt(10))^(-n)+(19+6*sqrt(10))^n.
a(n) = 38*a(n-1)-a(n-2).
G.f.: -2*x*(x-19) / (x^2-38*x+1).

A378908 Square array, read by descending antidiagonals, where each row n comprises the integers w >= 1 such that A000037(n)*w^2+4 is a square.

Original entry on oeis.org

4, 24, 2, 140, 8, 1, 816, 30, 3, 4, 4756, 112, 8, 40, 6, 27720, 418, 21, 396, 96, 2, 161564, 1560, 55, 3920, 1530, 12, 12, 941664, 5822, 144, 38804, 24384, 70, 456, 6, 5488420, 21728, 377, 384120, 388614, 408, 17316, 120, 1, 31988856, 81090, 987, 3802396
Offset: 1

Views

Author

Charles L. Hohn, Dec 10 2024

Keywords

Comments

Also, integers w >= 1 for each row n >= 1 such that z+(1/z) is an integer, where x = A000037(n), y = w*sqrt(x), and z = (y+ceiling(y))/2.
All terms of row n are positive integer multiples of T(n, 1).
Limit_{k->oo} T(n, k+1)/T(n, k) = (sqrt(b^2-4)+b)/2 where b=T(n, 2)/T(n, 1).

Examples

			n=row index; x=nonsquare integer of index n (A000037(n)):
 n  x    T(n, k)
------+---------------------------------------------------------------------
 1  2 |  4,   24,   140,     816,      4756,       27720,        161564, ...
 2  3 |  2,    8,    30,     112,       418,        1560,          5822, ...
 3  5 |  1,    3,     8,      21,        55,         144,           377, ...
 4  6 |  4,   40,   396,    3920,     38804,      384120,       3802396, ...
 5  7 |  6,   96,  1530,   24384,    388614,     6193440,      98706426, ...
 6  8 |  2,   12,    70,     408,      2378,       13860,         80782, ...
 7 10 | 12,  456, 17316,  657552,  24969660,   948189528,   36006232404, ...
 8 11 |  6,  120,  2394,   47760,    952806,    19008360,     379214394, ...
 9 12 |  1,    4,    15,      56,       209,         780,          2911, ...
10 13 |  3,   33,   360,    3927,     42837,      467280,       5097243, ...
11 14 |  8,  240,  7192,  215520,   6458408,   193536720,    5799643192, ...
12 15 |  2,   16,   126,     992,      7810,       61488,        484094, ...
13 17 | 16, 1056, 69680, 4597824, 303386704, 20018924640, 1320945639536, ...
14 18 |  8,  272,  9240,  313888,  10662952,   362226480,   12305037368, ...
...
		

Crossrefs

Programs

  • PARI
    row(n)={my(v=List()); for(t=3, oo, if((t^2-4)%x>0 || !issquare((t^2-4)/x), next); listput(v, sqrtint((t^2-4)/x)); break); listput(v, v[1]*sqrtint(v[1]^2*x+4)); while(#v<10, listput(v, v[#v]*(v[2]/v[1])-v[#v-1])); Vec(v)}
    for(n=1, 20, x=n+floor(1/2+sqrt(n)); print (n, " ", x, " ", row(n)))

Formula

For x = A000037(n) (nonsquare integer of index n):
If x is not the sum of 2 squares, then T(n, 1) = A048942(n); otherwise, T(n, 1) is a positive integer multiple of A048942(n).
For j in {-2, 1, 2, 4}, if x-j is a square (except 2-2=0^2 or 5-1=2^2), then T(n, 1) = (4/abs(j))*sqrt(x-j) and T(n, 2) = T(n, 1)^3/(4/abs(j)) + sign(j)*2*T(n, 1).
For j in {1, 4}, if x+j is a square, then T(n, 1) = 2/sqrt(4/j) and T(n, 2) = (4/j)*sqrt(x+j).
For k >= 2, T(n, k) = T(n, k-1)*sqrt(T(n, 1)^2*x+4) - [k>=3]*T(n, k-2).
T(n, 2) = Sum_{i=0..oo}(T(n, 1)^(2-2*i) * x^((1-2*i)/2) * A002420(i) * A033999(i)).
If T(n, 1) is even, then T(n, 2) = T(n, 1)*A180495(n); if T(n, 1) is odd and x is even, then T(n, 2) = T(n, 1)*sqrt(A180495(n)+2); if T(n, 1) and x are both odd, then T(n, 2) is a factor of T(n, 1)*A180495(n).
For k >= 3, T(n, k) = T(n, k-1)*(T(n, 2)/T(n, 1)) - T(n, k-2) = T(n, 1)*A298675(T(n, 2)/T(n, 1), k-1) + T(n, k-2) = sqrt((A298675(T(n, 2)/T(n, 1), k)^2-4)/x).
Showing 1-2 of 2 results.