cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239393 Nonnegative prime Lipschitz quaternions shown as 4-vectors sorted by norm and then (1,i,j,k) components.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1, 1, 2, 0, 0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 1, 2
Offset: 1

Views

Author

T. D. Noe, Mar 21 2014

Keywords

Comments

A Lipschitz quaternion has all integer components. The norms of quaternions are (rational) primes 2, 3, 5, 7, 11,... A quaternion is commonly written a + b*i + c*j + d*k, where 1, i, j, and k are units.

Examples

			The first six nonnegative prime Lipschitz quaternions are 1+i, 1+j, 1+k, i+j, i+k, and j+k.
		

Crossrefs

Cf. A239394 (number of Lipschitz quaternions having norm prime(n)).
Cf. A239395 (Hurwitz quaternions).

Programs

  • Mathematica
    (* first << Quaternions` *) mx = 5; lst = Flatten[Table[{a, b, c, d}, {a, 0, mx}, {b, 0, mx}, {c, 0, mx}, {d, 0, mx}], 3]; q = Select[lst, Norm[Quaternion @@ #] < mx^2 && PrimeQ[Quaternion @@ #, Quaternions -> True] &]; Sort[q, Norm[#1] < Norm[#2] &]