A239393 Nonnegative prime Lipschitz quaternions shown as 4-vectors sorted by norm and then (1,i,j,k) components.
1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1, 1, 2, 0, 0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 1, 2
Offset: 1
Examples
The first six nonnegative prime Lipschitz quaternions are 1+i, 1+j, 1+k, i+j, i+k, and j+k.
Links
- T. D. Noe, Table of n, a(n) for n = 1..2586 (4-vectors)
- Wikipedia , Hurwitz quaternion
Crossrefs
Programs
-
Mathematica
(* first << Quaternions` *) mx = 5; lst = Flatten[Table[{a, b, c, d}, {a, 0, mx}, {b, 0, mx}, {c, 0, mx}, {d, 0, mx}], 3]; q = Select[lst, Norm[Quaternion @@ #] < mx^2 && PrimeQ[Quaternion @@ #, Quaternions -> True] &]; Sort[q, Norm[#1] < Norm[#2] &]
Comments