cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055025 Norms of Gaussian primes.

Original entry on oeis.org

2, 5, 9, 13, 17, 29, 37, 41, 49, 53, 61, 73, 89, 97, 101, 109, 113, 121, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 361, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 529, 541, 557, 569
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

This is the range of the norm a^2 + b^2 of Gaussian primes a + b i. A239621 lists for each norm value a(n) one of the Gaussian primes as a, b with a >= b >= 0. In A239397, any of these (a, b) is followed by (b, a), except for a = b = 1. - Wolfdieter Lang, Mar 24 2014, edited by M. F. Hasler, Mar 09 2018
From Jean-Christophe Hervé, May 01 2013: (Start)
The present sequence is related to the square lattice, and to its division in square sublattices. Let's say that an integer n divides a lattice if there exists a sublattice of index n. Example: 2, 4, 5 divide the square lattice. Then A001481 (norms of Gaussian integers) is the sequence of divisors of the square lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. The present sequence gives the "prime divisors" of the square lattice.
Similarly, A055664 (Norms of Eisenstein-Jacobi primes) is the sequence of "prime divisors" of the hexagonal lattice. (End)
The sequence is formed of 2, the prime numbers of form 4k+1, and the square of other primes (of form 4k+3). These are the primitive elements of A001481. With 0 and 1, they are the numbers that are uniquely decomposable in the sum of two squares. - Jean-Christophe Hervé, Nov 17 2013

Examples

			There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i). In A239621 2+i is listed as 2, 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.

Crossrefs

Cf. A239397, A239621 (Gaussian primes).

Programs

  • Mathematica
    Union[(#*Conjugate[#] & )[ Select[Flatten[Table[a + b*I, {a, 0, 23}, {b, 0, 23}]], PrimeQ[#, GaussianIntegers -> True] & ]]][[1 ;; 55]] (* Jean-François Alcover, Apr 08 2011 *)
    (* Or, from formula: *) maxNorm = 569; s1 = Select[Range[1, maxNorm, 4], PrimeQ]; s3 = Select[Range[3, Sqrt[maxNorm], 4], PrimeQ]^2; Union[{2}, s1, s3]  (* Jean-François Alcover, Dec 07 2012 *)
  • PARI
    list(lim)=my(v=List()); if(lim>=2, listput(v,2)); forprime(p=3,sqrtint(lim\1), if(p%4==3, listput(v,p^2))); forprime(p=5,lim, if(p%4==1, listput(v,p))); Set(v) \\ Charles R Greathouse IV, Feb 06 2017
    
  • PARI
    isA055025(n)=(isprime(n) && n%4<3) || (issquare(n, &n) && isprime(n) && n%4==3) \\ Jianing Song, Aug 15 2023, based on Charles R Greathouse IV's program for A055664

Formula

Consists of 2; rational primes = 1 (mod 4) [A002144]; and squares of rational primes = 3 (mod 4) [A002145^2].
a(n) ~ 2n log n. - Charles R Greathouse IV, Feb 06 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000

A239621 Gaussian primes x + i*y, with x = a(2n-1) >= y = a(2n) >= 0, sorted by norm.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 3, 2, 4, 1, 5, 2, 6, 1, 5, 4, 7, 0, 7, 2, 6, 5, 8, 3, 8, 5, 9, 4, 10, 1, 10, 3, 8, 7, 11, 0, 11, 4, 10, 7, 11, 6, 13, 2, 10, 9, 12, 7, 14, 1, 15, 2, 13, 8, 15, 4, 16, 1, 13, 10, 14, 9, 16, 5, 17, 2, 13, 12, 14, 11, 16, 9, 18, 5, 17, 8, 19, 0
Offset: 1

Views

Author

T. D. Noe, Mar 22 2014

Keywords

Comments

The condition a >= b >= 0 implies that there is only one Gaussian prime for each norm. - T. D. Noe, Mar 26 2014
The real parts and imaginary parts are listed as a(2n-1) = A300587(n) and a(2n) = A300588(n), respectively. Sequence A239397 lists the pair (y, x) after each pair (x, y), except for (1, 1). - M. F. Hasler, Mar 10 2018

Examples

			From _M. F. Hasler_, Mar 09 2018: (Start)
Sorted by norm, the smallest Gaussian primes z = x + iy in the first half-quadrant x >= y >= 0 are:
a(1) + i*a(2) = 1 + i;
a(3) + i*a(4) = 2 + i;
a(5) + i*a(6) = 3;
... (End)
		

Crossrefs

Cf. A055025 (norms of Gaussian primes), A239397.

Programs

  • Mathematica
    mx = 20; lst = Flatten[Table[{a, b}, {a, 0, mx}, {b, 0, a}], 1]; qq = Select[lst, Norm[#] <= mx && PrimeQ[#[[1]] + I*#[[2]], GaussianIntegers -> True] &]; Sort[qq, Norm[#1] < Norm[#2] &]
  • PARI
    {for(n=2,400, f=factor(n*I)/*factor in Z[i]*/; matsize(f)[1]<=2 && vecsum(f[,2])==2+(f[1,1]==I) /*either I*p^2 or w*conj(w/I), maybe (1+I)^2 */ && printf("%d,",vecsort([real(f=f[3-f[1,2],1]),imag(f)],,4)))} \\ For illustrative use. - M. F. Hasler, Mar 09 2018

Extensions

Name changed and in cf. complex -> Gaussian - Wolfdieter Lang, Mar 25 2014
Name edited by M. F. Hasler, Mar 09 2018

A300587 Real part of the n-th Gaussian prime x + i*y, x >= y >= 0, ordered by norm x^2 + y^2.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 5, 7, 7, 6, 8, 8, 9, 10, 10, 8, 11, 11, 10, 11, 13, 10, 12, 14, 15, 13, 15, 16, 13, 14, 16, 17, 13, 14, 16, 18, 17, 19, 18, 17, 19, 20, 20, 15, 17, 20, 21, 19, 22, 20, 23, 21, 19, 20, 24, 23, 24, 18, 19, 25, 22, 25, 23, 26, 26, 22, 27, 26, 20
Offset: 1

Views

Author

M. F. Hasler, Mar 09 2018

Keywords

Comments

With the restriction Re(z) >= Im(z) >= 0 used here and in A239621, there is exactly one Gaussian prime z for each possible norm |z|^2 in A055025. Sequence A239397 lists both, (x, y) and (y, x), for each of these having x > y (i.e., except for x = y = 1).
The nice graph shows that the values are denser towards the upper bound a(n) <= sqrt(A055025(n)) ~ sqrt(2n log n) than to the lower bound sqrt(A055025(n)/2) ~ sqrt(n log n), while for the imaginary parts A300588, i.e., min(Re(z),Im(z)), the distribution looks rather uniform.

Crossrefs

Odd bisection of A239621. See A300588 for imaginary parts, A055025 for the norms.

Programs

  • PARI
    c=1; for(n=1,oo, matsize(f=factor(n*I))[1]<=2 && vecsum(f[,2])==2+(f[1, 1]==I) && !write("/tmp/b300587.txt",c" "max(real(f=f[3-f[1,2],1]),imag(f))) && c++>1e4 && break) \\ Replace write("/tmp/b300587.txt",c" by print1(", to print the values.

Formula

a(n) = A239621(2n-1) = A239397(4n-2) (= A239397(4n-5) for n > 1).
a(n) = sqrt(A055025(n) - A300588(n)^2).

A300588 Imaginary part y of the n-th Gaussian prime x + i*y, x >= y >= 0, ordered by norm x^2 + y^2 = A055025(n)^2.

Original entry on oeis.org

1, 1, 0, 2, 1, 2, 1, 4, 0, 2, 5, 3, 5, 4, 1, 3, 7, 0, 4, 7, 6, 2, 9, 7, 1, 2, 8, 4, 1, 10, 9, 5, 2, 12, 11, 9, 5, 8, 0, 7, 10, 6, 1, 3, 14, 12, 7, 4, 10, 5, 11, 0, 10, 14, 13, 1, 8, 5, 17, 16, 4, 13, 6, 12, 1, 5, 15, 2, 9, 19, 12, 17, 11, 5, 14, 10, 18, 4, 6, 16, 20, 19, 10, 13, 0, 4, 6
Offset: 1

Views

Author

M. F. Hasler, Mar 09 2018

Keywords

Comments

With the restriction Re(z) >= Im(z) >= 0 used here and in A239621, there is exactly one Gaussian prime z for each possible norm |z|^2 in A055025. Sequence A239397 lists both, (x, y) and (y, x), for each of these having x > y (i.e., except for x = y = 1).
According to the graph, the values seem rather uniformly distributed between 0 and the upper bound sqrt(A055025(n)/2) ~ sqrt(n log n), in contrast to the values of the real parts A300587(n).

Examples

			The smallest Gaussian primes with Re(z) >= Im(z) >= 0, ordered by norm, are 1+i, 2+i, 3, 3+i, ...
Their imaginary parts, listed here, are a(1) = 1, a(2) = 1, a(3) = 0, a(4) = 1,
		

Crossrefs

Even bisection of A239621. See A300587 for real parts, A055025 for the norms.

Programs

  • PARI
    c=1; for(n=1,oo, matsize(f=factor(n*I))[1]<=2 && vecsum(f[,2])==2+(f[1, 1]==I) && !write("/tmp/b300588.txt",c" "min(real(f=f[3-f[1,2],1]),imag(f))) && c++>1e4 && break) \\ Replace write("/tmp/b300588.txt",c" by print1(" to print the values.

Formula

a(n) = A239621(2n) = A239397(4n-3) (= A239397(4n-4) for n > 1).
a(n) = sqrt(A055025(n) - A300587(n)^2).
Showing 1-4 of 4 results.