A239445 Values n at which ratios of successive partition numbers approach 1 closer than the reciprocal of a whole number.
2, 3, 11, 25, 39, 57, 78, 102, 130, 161, 195, 232, 273, 317, 365, 415, 469, 526, 587, 651, 718, 788, 862, 939, 1019, 1103, 1189, 1280, 1373, 1470, 1570, 1673, 1779, 1889, 2002, 2119, 2239, 2362, 2488, 2618, 2750, 2887, 3026, 3169, 3315, 3464, 3617, 3773, 3932, 4094, 4260, 4429, 4602, 4777, 4956
Offset: 1
Examples
p(2)=2 and p(1)=1, so a(1) = 2, since p(2)/p(1) = 1+1/1. p(3)=3 and p(2)=2, so a(2)=3, since p(3)/p(2) = 1+1/2. p(11)=56 and p(10) = 42, so a(3) = 11, since p(11)/p(10) = 1+1/3.
Programs
-
Mathematica
AddDenom = 2; Breaks = {}; For[n = 2, n < 10000, n++, If[PartitionsP[n]/PartitionsP[n - 1] <= (1 + (1/AddDenom)), AppendTo[Breaks, n]; ADH = AddDenom + 1; AddDenom = ADH] ] Breaks
Formula
Empirical quadratic fit to first 78 terms: ak^2 + bk + c, a ~ 1.64466, b ~ -0.3287, c ~ -0.66.
Leading term appears to approach 1.644... k^2, where the constant is zeta(2), Pi^2/6. This can probably be rigorously derived from the asymptotic expansion of the partition function, p(n) ~ 1/(4 n sqrt(3)) exp( Pi sqrt(2n/3)).
Comments