cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239445 Values n at which ratios of successive partition numbers approach 1 closer than the reciprocal of a whole number.

Original entry on oeis.org

2, 3, 11, 25, 39, 57, 78, 102, 130, 161, 195, 232, 273, 317, 365, 415, 469, 526, 587, 651, 718, 788, 862, 939, 1019, 1103, 1189, 1280, 1373, 1470, 1570, 1673, 1779, 1889, 2002, 2119, 2239, 2362, 2488, 2618, 2750, 2887, 3026, 3169, 3315, 3464, 3617, 3773, 3932, 4094, 4260, 4429, 4602, 4777, 4956
Offset: 1

Views

Author

William J. Keith, Mar 18 2014

Keywords

Comments

The ratios of successive partition numbers p(n) / p(n-1) approach 1 monotonically, for n>1. a(k) gives the n for which p(n)/p(n+1) first equals or is less than 1+1/k.

Examples

			p(2)=2 and p(1)=1, so a(1) = 2, since p(2)/p(1) = 1+1/1.
p(3)=3 and p(2)=2, so a(2)=3, since p(3)/p(2) = 1+1/2.
p(11)=56 and p(10) = 42, so a(3) = 11, since p(11)/p(10) = 1+1/3.
		

Crossrefs

Cf. A000041 (Partition numbers), A013661 (Pi^2 / 6).

Programs

  • Mathematica
    AddDenom = 2;
    Breaks = {};
    For[n = 2, n < 10000, n++,
    If[PartitionsP[n]/PartitionsP[n - 1] <= (1 + (1/AddDenom)),
      AppendTo[Breaks, n]; ADH = AddDenom + 1; AddDenom = ADH]
    ]
    Breaks

Formula

Empirical quadratic fit to first 78 terms: ak^2 + bk + c, a ~ 1.64466, b ~ -0.3287, c ~ -0.66.
Leading term appears to approach 1.644... k^2, where the constant is zeta(2), Pi^2/6. This can probably be rigorously derived from the asymptotic expansion of the partition function, p(n) ~ 1/(4 n sqrt(3)) exp( Pi sqrt(2n/3)).