A239478
Integer solutions of the arithmetic differential equation m' = m + sqrt(m).
Original entry on oeis.org
225, 184041, 741321, 1095543801
Offset: 1
For m = 225 we have that m' = 240, sqrt(225) = 15 and 240 = 225 + 15.
-
with(numtheory); P:= proc(q) local n,p,x;
for n from 1 to q do x:=n^2;
if x*add(op(2,p)/op(1,p),p=ifactors(x)[2])=n^2+n then print(n^2);
fi; od; end: P(10^9);
A287102
Numbers k such that (10^(4*k+1)*37 + 10^(2*k)*(-99) - 73)/99 is prime (k > 0).
Original entry on oeis.org
1, 9, 441, 2980
Offset: 1
9 is a term because (10^(4*9+1)*37 + 10^(2*9)*(-99) - 73)/99 = 3737373737373737372737373737373737373 (prime). As a string, it consists of a middle '2' with the prefix '373737373737373737' ('37' concatenated 9 times) and the suffix '737373737373737373' ('73' concatenated 9 times).
Showing 1-2 of 2 results.
Comments