A239480 Palindromes such that additive and multiplicative persistences coincide.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 99, 101, 111, 121, 131, 141, 151, 161, 171, 202, 212, 222, 262, 282, 303, 313, 393, 404, 424, 454, 474, 525, 545, 565, 585, 595, 636, 656, 676, 757, 838, 858, 959, 1001, 1111, 1221, 1331, 1441, 1991, 2002, 2112, 2552
Offset: 1
Examples
99 -> 18 -> 9 has additive persistence 2. 99 -> 81 -> 8 has multiplicative persistence 2. The palindromic number 99 is therefore in the sequence.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Additive Persistence
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
- Index entries for sequences related to palindromes
Programs
-
PARI
for(n=0, 2552, s=Vec(Str(n)); if(s==vecextract(s, "-1..1"), v=n; a=0; while(n>9, a++; n=sumdigits(n)); n=v; m=0; while(n>9, m++; d=digits(n); n=prod(k=1, #d, d[k])); n=v; if(a==m, print1(n, ", "))));
-
Python
from math import prod from itertools import count, islice, product def A031286(n): ap = 0 while n > 9: n, ap = sum(map(int, str(n))), ap+1 return ap def A031346(n): mp = 0 while n > 9: n, mp = prod(map(int, str(n))), mp+1 return mp def is_pal(n): return (s:=str(n)) == s[::-1] def pals(base=10): # all d-digit palindromes digits = "".join(str(i) for i in range(base)) for d in count(1): for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def ok(n): return is_pal(n) and A031286(n) == A031346(n) def agen(): yield from filter(ok, pals()) print(list(islice(agen(), 20))) # Michael S. Branicky, Jun 22 2023
Comments