A239516 Number of partitions p of n that are separable by the 2*min(p); see Comments.
0, 0, 1, 1, 1, 3, 2, 4, 6, 6, 8, 12, 14, 16, 22, 27, 32, 41, 49, 60, 73, 88, 106, 130, 154, 184, 220, 262, 313, 373, 440, 520, 616, 723, 849, 1002, 1173, 1373, 1606, 1873, 2182, 2543, 2955, 3431, 3979, 4608, 5327, 6160, 7105, 8190, 9435, 10851, 12469, 14317
Offset: 1
Examples
Let h = 2*min(p). The (h,0)-separable partition of 8 is 521; the (h,1)-separable partition is 3212; the (h,2)-separable partitions are 242, 21212. So, there are 1 + 1 + 2 = 4 h-separable partitions of 8.
Programs
-
Mathematica
z = 75; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239515 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2*Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239516 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Max[p]] <= Length[p] + 1], {n, 1, z}] (* A239517 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Length[p]] <= Length[p] + 1], {n, 1, z}] (* A239518 *)
Comments