A239515 Number of partitions of n that are separable by the least part; see Comments.
0, 0, 1, 2, 4, 5, 9, 12, 16, 22, 29, 37, 48, 61, 76, 95, 118, 146, 179, 219, 265, 323, 390, 471, 564, 677, 809, 967, 1148, 1365, 1616, 1915, 2259, 2665, 3135, 3686, 4320, 5065, 5923, 6923, 8070, 9408, 10942, 12721, 14762, 17117, 19819, 22933, 26490, 30583
Offset: 1
Examples
Let h represent least part. The (h,0)-separable partitions of 8 are 512, 413, 323, 21212; the (h,1)-separable partitions are 71, 62, 53, 4211, 3311; the (h,2)-separable partitions are 161, 242, 13121. So, there are 5 + 5 + 3 = 12 h-separable partitions of 8.
Programs
-
Mathematica
z = 75; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239515 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2*Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239516 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Max[p]] <= Length[p] + 1], {n, 1, z}] (* A239517 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Length[p]] <= Length[p] + 1], {n, 1, z}] (* A239518 *)
Comments