A239517 Number of partitions of n that are separable by the greatest part; see Comments.
0, 0, 1, 2, 4, 5, 8, 10, 13, 16, 20, 24, 29, 33, 39, 46, 53, 59, 67, 77, 87, 97, 107, 120, 134, 147, 163, 180, 196, 216, 236, 259, 281, 305, 332, 363, 393, 423, 456, 496, 534, 577, 619, 667, 718, 770, 823, 887, 949, 1016, 1087, 1165, 1240, 1325, 1414, 1512
Offset: 1
Examples
Let h = max(p). The (h,0)-separable partition of 8 are 161, 251, 341, 242; the (h,1)-separable partitions are 71, 62, 323, 1313; the (h,2)-separable partitions are 323, 21212. So, there are 4 + 4 + 2 = 10 h-separable partitions of 8.
Programs
-
Mathematica
z = 75; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239515 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2*Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239516 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Max[p]] <= Length[p] + 1], {n, 1, z}] (* A239517 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Length[p]] <= Length[p] + 1], {n, 1, z}] (* A239518 *)
Comments