A239526 For 0<=n<=100, a(n) is the number of positive responses x such that x/N rounds to n%, minimized over sample size N.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 4, 1, 5, 3, 5, 2, 3, 4, 6, 1, 10, 6, 4, 3, 3, 7, 2, 7, 5, 3, 4, 5, 6, 7, 10, 17, 1, 18, 11, 8, 7, 6, 5, 4, 7, 10, 3, 11, 5, 5, 7, 11, 19, 2, 13, 9, 7, 5, 13, 8, 14, 3, 13, 10, 7, 11, 4, 13, 9, 5, 16, 11, 6, 7, 7, 8, 9, 10, 11, 13, 15, 18, 22, 28, 39, 66, 1
Offset: 0
Examples
a(31)=4 because 4/13=0.31 (2DP).
Crossrefs
Cf. A239525 (Minimal sample sizes).
Programs
-
Mathematica
Table[LinearProgramming[{1, 0}, {{-n/100 + 0.005, 1}, {n/100 + 0.005, -1}}, {0, 0}, {1, 1}, Integers], {n, 0, 100}] // Transpose // Last
-
Python
from itertools import count def A239526(n): for y in count(1): x, z = divmod(y*((n<<1)+1),200) if not z: return x x, z = divmod(y*((n<<1)-1),200) if (x:=x+bool(z)) and (200*x+y)//(y<<1) == n: return x # Chai Wah Wu, Jun 28 2025