A239527 Numbers k^2 + (k+1)^2 that can be expressed as a sum of two squares in exactly one other way.
85, 145, 221, 265, 365, 481, 545, 685, 1405, 1513, 1985, 2245, 2813, 2965, 3281, 3785, 3961, 4141, 4705, 5305, 5513, 5941, 6161, 6385, 6613, 7081, 7813, 8065, 8321, 9113, 9385, 10805, 11101, 11401, 11705, 12013, 12961, 13285, 13945, 16021, 17113, 17861, 19405
Offset: 1
Keywords
Examples
365 is in the sequence because 365 = 2^2+19^2 = 13^2+14^2; in the second representation 14-13=1.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ok[n_] := 2 == Count[ PowersRepresentations[n, 2, 2], ?(! MemberQ[#, 0] &)]; Select[(2*#^2 + 2*# + 1) & /@ Range[100], ok] (* _Giovanni Resta, Mar 21 2014 *)
Formula
Each number is of the form 2y^2 + 2y + 1.
Comments