A239550 Number A(n,k) of compositions of n such that the first part is 1 and the second differences of the parts are in {-k,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 4, 4, 3, 1, 1, 1, 2, 4, 7, 6, 2, 1, 1, 1, 2, 4, 7, 11, 9, 2, 1, 1, 1, 2, 4, 8, 13, 18, 13, 3, 1, 1, 1, 2, 4, 8, 15, 23, 32, 18, 3, 1, 1, 1, 2, 4, 8, 15, 28, 40, 53, 24, 2, 1, 1, 1, 2, 4, 8, 16, 29, 52, 73, 89, 34, 3
Offset: 0
Examples
A(6,0) = 3: [1,1,1,1,1,1], [1,2,3], [1,5]. A(5,1) = 4: [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,4]. A(4,2) = 4: [1,1,1,1], [1,1,2], [1,2,1], [1,3]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, 2, 2, ... 2, 3, 4, 4, 4, 4, 4, 4, 4, ... 2, 4, 7, 7, 8, 8, 8, 8, 8, ... 3, 6, 11, 13, 15, 15, 16, 16, 16, ... 2, 9, 18, 23, 28, 29, 31, 31, 32, ... 2, 13, 32, 40, 52, 56, 60, 61, 63, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, j, k) option remember; `if`(n=0, 1, `if`(i=0, add(b(n-h, j, h, k), h=1..n), add( b(n-h, j, h, k), h=max(1, 2*j-i-k)..min(n, 2*j-i+k)))) end: A:= (n, k)-> `if`(n=0, 1, b(n-1, 0, 1, k)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, 1, If[i == 0, Sum[b[n-h, j, h, k], {h, 1, n}], Sum[b[n-h, j, h, k], {h, Max[1, 2*j - i - k], Min[n, 2*j - i + k]}]]] ; A[n_, k_] := If[n == 0, 1, b[n-1, 0, 1, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 22 2015, after Alois P. Heinz *)