cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239550 Number A(n,k) of compositions of n such that the first part is 1 and the second differences of the parts are in {-k,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 4, 4, 3, 1, 1, 1, 2, 4, 7, 6, 2, 1, 1, 1, 2, 4, 7, 11, 9, 2, 1, 1, 1, 2, 4, 8, 13, 18, 13, 3, 1, 1, 1, 2, 4, 8, 15, 23, 32, 18, 3, 1, 1, 1, 2, 4, 8, 15, 28, 40, 53, 24, 2, 1, 1, 1, 2, 4, 8, 16, 29, 52, 73, 89, 34, 3
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2014

Keywords

Examples

			A(6,0) = 3: [1,1,1,1,1,1], [1,2,3], [1,5].
A(5,1) = 4: [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,4].
A(4,2) = 4: [1,1,1,1], [1,1,2], [1,2,1], [1,3].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
  2,  3,  4,  4,  4,  4,  4,  4,  4, ...
  2,  4,  7,  7,  8,  8,  8,  8,  8, ...
  3,  6, 11, 13, 15, 15, 16, 16, 16, ...
  2,  9, 18, 23, 28, 29, 31, 31, 32, ...
  2, 13, 32, 40, 52, 56, 60, 61, 63, ...
		

Crossrefs

Main diagonal gives A239561.

Programs

  • Maple
    b:= proc(n, i, j, k) option remember; `if`(n=0, 1,
          `if`(i=0, add(b(n-h, j, h, k), h=1..n), add(
           b(n-h, j, h, k), h=max(1, 2*j-i-k)..min(n, 2*j-i+k))))
        end:
    A:= (n, k)-> `if`(n=0, 1, b(n-1, 0, 1, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, 1, If[i == 0, Sum[b[n-h, j, h, k], {h, 1, n}], Sum[b[n-h, j, h, k], {h, Max[1, 2*j - i - k], Min[n, 2*j - i + k]}]]] ; A[n_, k_] := If[n == 0, 1, b[n-1, 0, 1, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 22 2015, after Alois P. Heinz *)