cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239561 Number of compositions of n such that the first part is 1 and the second differences of the parts are in {-n,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 31, 63, 125, 252, 504, 1013, 2027, 4069, 8141, 16318, 32650, 65381, 130801, 261791, 523677, 1047780, 2095796, 4192533, 8385623, 16773321, 33547917, 67100362, 134203614, 268417029, 536840509, 1073702131, 2147418493, 4294882224, 8589795592
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2014

Keywords

Examples

			There are 2^5 = 32 compositions of 7 with first part = 1.  Exactly one of these has second differences not in {-7,...,7}, namely [1,5,1].  Thus a(7) = 32 - 1 = 31.
		

Crossrefs

Main diagonal of A239550.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<5, [1, 1, 3, 4, 8][n+1],
          (-(n^3+3*n^2+184*n-348) *b(n-1)
           +(2*n^4+23*n^3-155*n^2-166*n+3776) *b(n-2)
           +(n^4+14*n^3-5*n^2+122*n+768) *b(n-3)
           +(2*n^3+10*n^2-64*n-1328) *b(n-4)
           -(2*n^4+28*n^3-78*n^2-272*n+2320) *b(n-5))/
          (n^4+10*n^3-75*n^2-20*n+1244))
        end:
    a:= n-> `if`(n<7, ceil(2^(n-2)), 2^(n-2)-b(n-7)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, 1, If[i == 0, Sum[b[n - h, j, h, k], {h, 1, n}], Sum[b[n - h, j, h, k], {h, Max[1, 2*j - i - k], Min[n, 2*j - i + k]}]]];
    a[n_] := If[n == 0, 1, b[n - 1, 0, 1, n]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)

Formula

a(n) ~ 2^(n-2). - Vaclav Kotesovec, May 01 2014