cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A239563 Numbers n such that there are a, b with abs(sigma(a) - sigma(b)) = sigma(n) - n and a U b = n, where U is decimal concatenation.

Original entry on oeis.org

23, 47, 139, 529, 611, 911, 1109, 1445, 1621, 2003, 2521, 2531, 4007, 4361, 4879, 7169, 9011, 9013, 9481, 13009, 18883, 22081, 24257, 25031, 45349, 49901, 56081, 90011, 98941, 99101, 133705, 160031, 169181, 200003, 202289, 210181, 250031, 307289, 336961, 357101
Offset: 1

Views

Author

Paolo P. Lava, Mar 21 2014

Keywords

Examples

			For n = 9481 we can consider 9481 = 9 U 481 and sigma(9481) = 10000, sigma(481) = 532, sigma(9) = 13 and 532 - 13 = 519 = 10000 - 9481.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    T:=proc(t) local w,x,y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
    P:=proc(q) local a,b,c,d,i,n;
    for n from 1 to q do a:=sigma(n); b:=T(n);
    for i from 1 to b-1 do c:=trunc(n/10^i); d:=n-c*10^i;
    if abs(sigma(c)-sigma(d))=a-n then print(n); break; fi;
    od; od; end: P(10^9);

A239686 Numbers n such that if n = a U b (where U denotes concatenation) then sigma*(a) + sigma*(b) = abs(sigma*(n) - n), where sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

47, 118, 205, 846, 898, 1219, 4181, 4236, 4701, 4929, 6014, 6516, 13276, 30445, 59956, 61916, 63216, 67314, 72066, 79554, 90674, 106316, 128998, 129179, 136816, 142486, 143396, 180448, 229914, 284894, 357841, 421318, 483286, 486721, 487618, 500218, 642445
Offset: 1

Views

Author

Paolo P. Lava, Mar 24 2014

Keywords

Comments

Neither a or b minor than 2 are considered because numbers 1 and 2 have no anti-divisors.
Similar to A239562 but using anti-divisors instead of divisors.

Examples

			Anti-divisors of 4701 are 2, 6, 7, 17, 79, 119, 1343, 553, 3134 and their sum is 5260. Consider 4701 as 4 U 701. Anti-divisors of 4 is 3 and of 701 are 2, 3, 23, 61, 467 whose sum is 556. At the end we have that 5260 - 4701 = 559 = 3 + 556.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    T:=proc(t) local w, x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
    P:=proc(q) local a, b, c, d, f, g, i, j, k,n;
    for n from 1 to q do b:=T(n); k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;
    a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    for i from 1 to b-1 do c:=trunc(n/10^i); d:=n-c*10^i; if c>2 and d>2 then
    k:=0; j:=c; while j mod 2<>1 do k:=k+1; j:=j/2; od;
    f:=sigma(2*c+1)+sigma(2*c-1)+sigma(c/2^k)*2^(k+1)-6*c-2;
    k:=0; j:=d; while j mod 2<>1 do k:=k+1; j:=j/2; od;
    g:=sigma(2*d+1)+sigma(2*d-1)+sigma(d/2^k)*2^(k+1)-6*d-2;
    if f+g=a-n then print(n); break; fi; fi; od; od; end: P(10^9);

A249065 Numbers n such that n = concatenate(a, b) and sigma(a) + sigma(b) = phi(n).

Original entry on oeis.org

12, 420, 966, 2700, 5700, 5940, 7440, 12540, 71100, 76680, 107880, 118680, 121920, 156420, 160650, 161880, 259080, 284580, 339150, 353430, 395850, 498420, 585200, 600780, 701220, 746130, 752100, 771420, 870870, 1052220, 1249680, 1654620, 1684020, 1696080
Offset: 1

Views

Author

Paolo P. Lava, Oct 20 2014

Keywords

Examples

			For n = 966 we can consider 966 as 96 U 6; sigma(96) + sigma(6) = 252 + 12 = 264 = phi(966).
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,i,n; for n from 1 to q do
    for i from 1 to ilog10(n) do a:=trunc(n/10^i); b:=n-a*10^i;
    if sigma(a)+sigma(b)=phi(n) then print(n); break;
    fi; od; od; end: P(10^9);

A258319 Numbers n such that n = concat(a,b) and n = phi(n) + phi(a) + phi(b), with a>0 and b>0, where phi(n) is the Euler totient function of n.

Original entry on oeis.org

25, 177, 1177, 2501, 17105, 21337, 22681, 32581, 217009, 409501, 561601, 577501, 861841, 1025821, 1401841, 1738081, 2836465, 8331361, 10284193, 19971901, 20103001, 27835921, 31949921, 34897501, 100763053, 107314217, 111512701, 121806001, 150658561, 155874001
Offset: 1

Views

Author

Paolo P. Lava, May 26 2015

Keywords

Examples

			25 = concat(2,5); phi(25) + phi(2) + phi(5) = 20 + 1 + 4 = 25;
177 = concat(1,77); phi(177) + phi(1) + phi(77) = 116 + 1 + 60 = 177; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, b, i; global n; for n from 1 to q do
    for i from 1 to ilog10(n) do a:=trunc(n/10^i); b:=n-a*10^i;
    if a>0 and b>0 then if phi(n)+phi(a)+phi(b)=n
    then print(n); break; fi; fi; od; od; end: P(10^9);

Extensions

a(18) inserted by Giovanni Resta, May 27 2015
Showing 1-4 of 4 results.