A239576 Number of non-equivalent (mod D_4) binary n X n matrices with 4 pairwise nonadjacent 1's.
0, 3, 62, 683, 4015, 16989, 56196, 158271, 391917, 882683, 1836106, 3587103, 6638267, 11747613, 19985680, 32879339, 52490521, 81638211, 124000342, 184440963, 269135111, 386033453, 545007772, 758491143, 1041639045, 1413189339, 1895630946, 2516334551, 3307717267
Offset: 2
Examples
There are a(3) = 3 non-equivalent binary 3 X 3 matrices with 4 pairwise nonadjacent 1s (x): [0 1 0] [1 0 1] [1 0 1] |1 0 1| |0 1 0| |0 0 0| [0 1 0] [1 0 0] [1 0 1]
Links
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1)
Programs
-
Mathematica
Flatten[{0,Table[(n^8-30*n^6+24*n^5+352*n^4-576*n^3-1280*n^2+3360*n-1536+If[EvenQ[n],0,(14*n^4-72*n^3+226*n^2-624*n+717)])/192,{n,3,20}]}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 28 2014 *) Drop[CoefficientList[Series[-x^2 - x^2*(1 - x + 51*x^2 + 454*x^3 + 1374*x^4 + 2527*x^5 + 1990*x^6 + 634*x^7 - 347*x^8 - 49*x^9 + 87*x^10 + 16*x^11 - 20*x^12 + 3*x^13) / ((-1+x)^9*(1+x)^5), {x, 0, 20}], x],2] (* Vaclav Kotesovec, Mar 29 2014 *)
Formula
a(n) = (n^8 -30*n^6 +24*n^5 +352*n^4 -576*n^3 -1280*n^2 +3360*n -1536 + IF(n==1 mod 2)*(14*n^4 -72*n^3 +226*n^2 -624*n +717))/192; n>=3.
G.f.: -x^2 - x^2*(1 - x + 51*x^2 + 454*x^3 + 1374*x^4 + 2527*x^5 + 1990*x^6 + 634*x^7 - 347*x^8 - 49*x^9 + 87*x^10 + 16*x^11 - 20*x^12 + 3*x^13) / ((-1+x)^9*(1+x)^5). - Vaclav Kotesovec, Mar 29 2014
Comments