A232567
Number of non-equivalent binary n X n matrices with two nonadjacent 1's.
Original entry on oeis.org
0, 1, 6, 17, 43, 84, 159, 262, 426, 635, 940, 1311, 1821, 2422, 3213, 4124, 5284, 6597, 8226, 10045, 12255, 14696, 17611, 20802, 24558, 28639, 33384, 38507, 44401, 50730, 57945, 65656, 74376, 83657, 94078, 105129, 117459, 130492, 144951, 160190, 177010
Offset: 1
There are a(3) = 6 non-equivalent 3 X 3 matrices with two nonadjacent 1's (and no other 1's):
[1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0]
|0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1|
[0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1)
A232569
Triangle T(n, k) = number of non-equivalent (mod D_4) binary n X n matrices with k pairwise not adjacent 1's; k=0,...,n^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 0, 1, 3, 6, 6, 3, 1, 0, 0, 0, 0, 1, 3, 17, 40, 62, 45, 20, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 43, 210, 683, 1425, 1936, 1696, 977, 366, 101, 21, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 84, 681, 4015, 16149, 46472, 95838, 143657
Offset: 1
Triangle begins:
1,1;
1,1,1,0,0;
1,3,6,6,3,1,0,0,0,0;
1,3,17,40,62,45,20,4,1,0,0,0,0,0,0,0,0;
1,6,43,210,683,1425,1936,1696,977,366,101,21,5,1,0,0,0,0,0,0,0,0,0,0,0,0;
...
There are T(3, 2) = 6 non-equivalent binary 3 X 3 matrices with 2 not adjacent 1's (and no other 1's):
[1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0]
|0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1|
[0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
A232568
Number of non-equivalent binary n X n matrices with three pairwise nonadjacent 1's.
Original entry on oeis.org
0, 6, 40, 210, 681, 1919, 4443, 9481, 18206, 33164, 56570, 92996, 146175, 223565, 330981, 479779, 678508, 943586, 1287036, 1731654, 2293765, 3004011, 3883935, 4973645, 6300906, 7917064, 9857198, 12185816, 14946491, 18218969, 22056585, 26556551, 31783320
Offset: 2
There are a(3) = 6 non-equivalent 3 X 3 matrices with three pairwise nonadjacent 1's (and no other 1's):
[1 0 0] [1 0 1] [1 0 0] [1 0 1] [1 0 1] [0 1 0]
|0 1 0| |0 0 0| |0 0 1| |0 0 0| |0 1 0| |1 0 1|
[0 0 1] [1 0 0] [0 1 0] [0 1 0] [0 0 0] [0 0 0]
- Heinrich Ludwig, Table of n, a(n) for n = 2..1001
- Index entries for linear recurrences with constant coefficients, signature (3,1,-11,6,14,-14,-6,11,-1,-3,1).
-
A232568:=n->(n^6-15*n^4+28*n^3+29*n^2-76*n-15-((n+1) mod 2)*(8*n^3-21*n^2+40*n-63))/48; seq(A232568(n), n=2..50); # Wesley Ivan Hurt, Dec 06 2013
-
Table[(n^6-15n^4+28n^3+29n^2-76n-15-Mod[n+1,2](8n^3-21n^2+40n-63))/48, {n, 2, 50}] (* Wesley Ivan Hurt, Dec 06 2013 *)
Showing 1-3 of 3 results.
Comments