A232567
Number of non-equivalent binary n X n matrices with two nonadjacent 1's.
Original entry on oeis.org
0, 1, 6, 17, 43, 84, 159, 262, 426, 635, 940, 1311, 1821, 2422, 3213, 4124, 5284, 6597, 8226, 10045, 12255, 14696, 17611, 20802, 24558, 28639, 33384, 38507, 44401, 50730, 57945, 65656, 74376, 83657, 94078, 105129, 117459, 130492, 144951, 160190, 177010
Offset: 1
There are a(3) = 6 non-equivalent 3 X 3 matrices with two nonadjacent 1's (and no other 1's):
[1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0]
|0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1|
[0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1)
A232569
Triangle T(n, k) = number of non-equivalent (mod D_4) binary n X n matrices with k pairwise not adjacent 1's; k=0,...,n^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 0, 1, 3, 6, 6, 3, 1, 0, 0, 0, 0, 1, 3, 17, 40, 62, 45, 20, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 43, 210, 683, 1425, 1936, 1696, 977, 366, 101, 21, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 84, 681, 4015, 16149, 46472, 95838, 143657
Offset: 1
Triangle begins:
1,1;
1,1,1,0,0;
1,3,6,6,3,1,0,0,0,0;
1,3,17,40,62,45,20,4,1,0,0,0,0,0,0,0,0;
1,6,43,210,683,1425,1936,1696,977,366,101,21,5,1,0,0,0,0,0,0,0,0,0,0,0,0;
...
There are T(3, 2) = 6 non-equivalent binary 3 X 3 matrices with 2 not adjacent 1's (and no other 1's):
[1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0]
|0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1|
[0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
A239576
Number of non-equivalent (mod D_4) binary n X n matrices with 4 pairwise nonadjacent 1's.
Original entry on oeis.org
0, 3, 62, 683, 4015, 16989, 56196, 158271, 391917, 882683, 1836106, 3587103, 6638267, 11747613, 19985680, 32879339, 52490521, 81638211, 124000342, 184440963, 269135111, 386033453, 545007772, 758491143, 1041639045, 1413189339, 1895630946, 2516334551, 3307717267
Offset: 2
There are a(3) = 3 non-equivalent binary 3 X 3 matrices with 4 pairwise nonadjacent 1s (x):
[0 1 0] [1 0 1] [1 0 1]
|1 0 1| |0 1 0| |0 0 0|
[0 1 0] [1 0 0] [1 0 1]
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1)
-
Flatten[{0,Table[(n^8-30*n^6+24*n^5+352*n^4-576*n^3-1280*n^2+3360*n-1536+If[EvenQ[n],0,(14*n^4-72*n^3+226*n^2-624*n+717)])/192,{n,3,20}]}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 28 2014 *)
Drop[CoefficientList[Series[-x^2 - x^2*(1 - x + 51*x^2 + 454*x^3 + 1374*x^4 + 2527*x^5 + 1990*x^6 + 634*x^7 - 347*x^8 - 49*x^9 + 87*x^10 + 16*x^11 - 20*x^12 + 3*x^13) / ((-1+x)^9*(1+x)^5), {x, 0, 20}], x],2] (* Vaclav Kotesovec, Mar 29 2014 *)
Showing 1-3 of 3 results.
Comments