A239585 Prime factor <= other prime factor of n-th brilliant number, cf. A078972.
2, 2, 3, 2, 2, 3, 3, 5, 5, 7, 11, 11, 13, 11, 11, 13, 13, 11, 17, 13, 11, 17, 11, 19, 13, 17, 13, 11, 19, 11, 11, 13, 17, 11, 17, 23, 13, 19, 13, 11, 19, 13, 17, 11, 23, 11, 13, 17, 19, 23, 17, 11, 13, 19, 11, 13, 17, 11, 19, 29, 23, 11, 13, 19, 29, 17, 11
Offset: 1
Examples
n | A239585(n) | A239586(n) | A078972(n) Lengths of factors -------+------------+------------+----------- ------------------ 1 | 2 | 2 | 4 1 5 | 2 | 7 | 14 10 | 7 | 7 | 49 |.........................| .................. 11 | 11 | 11 | 121 2 78 | 11 | 97 | 1067 100 | 37 | 37 | 1369 241 | 97 | 97 | 9409 |.........................| .................. 242 | 101 | 101 | 10201 3 1000 | 193 | 263 | 50759 2530 | 101 | 997 | 100697 10000 | 743 | 937 | 696191 10537 | 997 | 997 | 994009 |.........................| .................. 10538 | 1009 | 1009 | 1018081 4
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..20000
- Dario Alpern, Brilliant Numbers
Programs
-
Haskell
a239585 = a020639 . a078972
-
Mathematica
Table[With[{f = FactorInteger[k]}, If[Total[f[[All, 2]]] == 2 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1, f[[1, 1]], Nothing]], {k, 1000}] (* Paolo Xausa, Oct 02 2024 *) dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *) Map[FactorInteger[#][[1, 1]]&, Flatten[Array[dlist2, 2]]] (* Paolo Xausa, Oct 09 2024 *)
Comments