cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239585 Prime factor <= other prime factor of n-th brilliant number, cf. A078972.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 5, 5, 7, 11, 11, 13, 11, 11, 13, 13, 11, 17, 13, 11, 17, 11, 19, 13, 17, 13, 11, 19, 11, 11, 13, 17, 11, 17, 23, 13, 19, 13, 11, 19, 13, 17, 11, 23, 11, 13, 17, 19, 23, 17, 11, 13, 19, 11, 13, 17, 11, 19, 29, 23, 11, 13, 19, 29, 17, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 22 2014

Keywords

Comments

a(n) = A020639(A078972(n)) = A078972(n) / A239586(n).
A055642(a(n)) = A055642(A239586(n)).

Examples

			      n  | A239585(n) | A239586(n) | A078972(n)   Lengths of factors
  -------+------------+------------+-----------   ------------------
      1  |        2   |        2   |        4          1
      5  |        2   |        7   |       14
     10  |        7   |        7   |       49
         |.........................|              ..................
     11  |       11   |       11   |      121          2
     78  |       11   |       97   |     1067
    100  |       37   |       37   |     1369
    241  |       97   |       97   |     9409
         |.........................|              ..................
    242  |      101   |      101   |    10201          3
   1000  |      193   |      263   |    50759
   2530  |      101   |      997   |   100697
  10000  |      743   |      937   |   696191
  10537  |      997   |      997   |   994009
         |.........................|              ..................
  10538  |     1009   |     1009   |  1018081          4
		

Crossrefs

Subsequence of A084126.

Programs

  • Haskell
    a239585 = a020639 . a078972
  • Mathematica
    Table[With[{f = FactorInteger[k]}, If[Total[f[[All, 2]]] == 2 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1, f[[1, 1]], Nothing]], {k, 1000}] (* Paolo Xausa, Oct 02 2024 *)
    dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Map[FactorInteger[#][[1, 1]]&, Flatten[Array[dlist2, 2]]] (* Paolo Xausa, Oct 09 2024 *)