A239620 Number of Euler bricks with side length a < b < c < 10^n, i.e., in a boxed parameter space with dimension 10^n.
0, 0, 10, 151, 1714, 17873, 180953, 1815841, 18174211
Offset: 1
Examples
a(3) = 10, since there are the ten Euler bricks [44, 117, 240], [85, 132, 720], [88, 234, 480], [132, 351, 720], [140, 480, 693], [160, 231, 792], [176, 468, 960], [240, 252, 275], [480, 504, 550], [720, 756, 825] with longest side length < 1000.
Links
- Eric Weisstein's World of Mathematics, Euler Brick
- Index entries for sequences related to bricks
Programs
-
Sage
def a(n): ans = 0 for x in range(1,10^n): divs = Integer(x^2).divisors() for d in divs: if (d <= x^2/d): continue if (d-x^2/d >= 2*x): break if (d-x^2/d)%2==0: y = (d-x^2/d)/2 for e in divs: if (e <= x^2/e): continue if (e-x^2/e >= 2*y): break if (e-x^2/e)%2==0: z = (e-x^2/e)/2 if (y^2+z^2).is_square(): ans += 1 return ans # Robin Visser, Jan 01 2024
Extensions
a(6)-a(8) from Giovanni Resta, Mar 22 2014
a(9) from Robin Visser, Jan 01 2024
Comments