A239621 Gaussian primes x + i*y, with x = a(2n-1) >= y = a(2n) >= 0, sorted by norm.
1, 1, 2, 1, 3, 0, 3, 2, 4, 1, 5, 2, 6, 1, 5, 4, 7, 0, 7, 2, 6, 5, 8, 3, 8, 5, 9, 4, 10, 1, 10, 3, 8, 7, 11, 0, 11, 4, 10, 7, 11, 6, 13, 2, 10, 9, 12, 7, 14, 1, 15, 2, 13, 8, 15, 4, 16, 1, 13, 10, 14, 9, 16, 5, 17, 2, 13, 12, 14, 11, 16, 9, 18, 5, 17, 8, 19, 0
Offset: 1
Keywords
Examples
From _M. F. Hasler_, Mar 09 2018: (Start) Sorted by norm, the smallest Gaussian primes z = x + iy in the first half-quadrant x >= y >= 0 are: a(1) + i*a(2) = 1 + i; a(3) + i*a(4) = 2 + i; a(5) + i*a(6) = 3; ... (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..10106 (5053 pairs)
- Eric Weisstein's World of Mathematics, Gaussian prime
- Wikipedia, Complex Number
Programs
-
Mathematica
mx = 20; lst = Flatten[Table[{a, b}, {a, 0, mx}, {b, 0, a}], 1]; qq = Select[lst, Norm[#] <= mx && PrimeQ[#[[1]] + I*#[[2]], GaussianIntegers -> True] &]; Sort[qq, Norm[#1] < Norm[#2] &]
-
PARI
{for(n=2,400, f=factor(n*I)/*factor in Z[i]*/; matsize(f)[1]<=2 && vecsum(f[,2])==2+(f[1,1]==I) /*either I*p^2 or w*conj(w/I), maybe (1+I)^2 */ && printf("%d,",vecsort([real(f=f[3-f[1,2],1]),imag(f)],,4)))} \\ For illustrative use. - M. F. Hasler, Mar 09 2018
Extensions
Name changed and in cf. complex -> Gaussian - Wolfdieter Lang, Mar 25 2014
Name edited by M. F. Hasler, Mar 09 2018
Comments