A239623 Conjecturally, the largest k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).
4, 786, 785, 2080, 902, 2034, 2079, 1086, 2081, 2090, 1652, 2562, 3905, 8185, 4987, 3507, 5562, 2713, 3584, 4191, 8285, 9319, 12237, 12117, 12248, 9311, 8180, 8399, 9308, 20123, 11977, 11683, 12261, 14365, 15403, 20114, 16867, 19938, 19559, 20316, 24706
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..125
Programs
-
Mathematica
b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 25000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]][[-1]] - 1, {p, Join[{0}, Prime[Range[20]]]}]
Comments