cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239623 Conjecturally, the largest k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).

Original entry on oeis.org

4, 786, 785, 2080, 902, 2034, 2079, 1086, 2081, 2090, 1652, 2562, 3905, 8185, 4987, 3507, 5562, 2713, 3584, 4191, 8285, 9319, 12237, 12117, 12248, 9311, 8180, 8399, 9308, 20123, 11977, 11683, 12261, 14365, 15403, 20114, 16867, 19938, 19559, 20316, 24706
Offset: 0

Views

Author

T. D. Noe, Mar 27 2014

Keywords

Comments

The last number in row n of A239622. The 0th term is the largest number k such that binomial(2k,k) is squarefree. The first 41 terms were checked by computing binomial(2k,k) for k <= 10^5. See the plot in A110493.

Crossrefs

Programs

  • Mathematica
    b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 25000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]][[-1]] - 1, {p, Join[{0}, Prime[Range[20]]]}]