cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239628 Factored over the Gaussian integers, the least positive number having n prime factors counted multiply, including units -1, i, and -i.

Original entry on oeis.org

1, 9, 2, 6, 4, 12, 8, 16, 48, 144, 32, 96, 64, 192, 128, 256, 768, 2304, 512, 1536, 1024, 3072, 2048, 4096, 12288, 36864, 8192, 24576, 16384, 49152, 32768, 65536, 196608, 589824, 131072, 393216, 262144, 786432, 524288, 1048576, 3145728, 9437184, 2097152
Offset: 1

Views

Author

T. D. Noe, Mar 31 2014

Keywords

Comments

Here -1, i, and -i are counted as factors. The factor 1 is counted only in a(1). All these numbers of products of 2^k, 3, and 9.
Similar to A164073, which gives the least integer having n prime factors (over the Gaussian integers) shifted by 1.

Examples

			a(2) = 9 because 9 = 3 * 3.
a(3) = 2 because 2 = -i * (1 + i)^2.
a(4) = 6 because 6 = -i * (1 + i)^2 * 3.
		

Crossrefs

Cf. A001221, A001222 (integer factorizations).
Cf. A078458, A086275 (Gaussian factorizations).
Cf. A164073 (least number having n Gaussian factors, excluding units);
Cf. A239627 (number of Gaussian factors of n, including units).
Cf. A239629, A239630 (similar, but count distinct prime factors).

Programs

  • Mathematica
    nn = 30; t = Table[0, {nn}]; n = 0; found = 0; While[found < nn, n++; cnt = Total[Transpose[FactorInteger[n, GaussianIntegers -> True]][[2]]]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = n; found++]]; t