cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239631 Triangular array read by rows: T(n,k) is the number of parts equal to k over all palindromic compositions of n, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 6, 3, 0, 1, 8, 2, 1, 0, 1, 16, 8, 2, 1, 0, 1, 20, 6, 4, 0, 1, 0, 1, 40, 20, 6, 4, 0, 1, 0, 1, 48, 16, 10, 2, 2, 0, 1, 0, 1, 96, 48, 16, 10, 2, 2, 0, 1, 0, 1, 112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1, 224, 112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1
Offset: 1

Views

Author

Geoffrey Critzer, Mar 22 2014

Keywords

Examples

			1,
2,   1,
3,   0,  1,
6,   3,  0,  1,
8,   2,  1,  0, 1,
16,  8,  2,  1, 0, 1,
20,  6,  4,  0, 1, 0, 1,
40,  20, 6,  4, 0, 1, 0, 1,
48,  16, 10, 2, 2, 0, 1, 0, 1,
96,  48, 16, 10,2, 2, 0, 1, 0, 1,
112, 40, 24, 6, 6, 0, 2, 0, 1, 0, 1
In the palindromic compositions of 5: 5, 1+3+1, 2+1+2, 1+1+1+1+1  there are T(5,1)=8 ones, T(5,2)=2 twos, and T(5,3)=1 three and T(5,5)=1 five.
		

Crossrefs

Programs

  • Mathematica
    nn=15;Table[Take[Drop[Transpose[Map[PadRight[#,nn+1]&,Level[Table[r=Solve[p==1/(1-x)-x^n+y x^n+(x^2/(1-x^2)-x^(2n)+y^2x^(2n))p,p];CoefficientList[Series[D[p/.r,y]/.y->1,{x,0,nn}],x],{n,1,nn}],{2}]]],1][[n]],n],{n,1,nn}]//Grid

Formula

Explicit formulas for T(n,k) given in reference [Chinn, Grimaldi, Heubach] as Theorem 6:
T(n,k) = 0 if n
T(n,k) = 2^(floor(n/2)-k)*(2 + floor(n/2) - k) if n>=2k and n!=k (mod 2);
T(n,k) = 1 if n=k;
T(n,k) = 2^((n-k)/2-1) if k
T(n,k) = 2^(floor(n/2)-k)*(2 + floor(n/2) - k + 2^floor((k+1)/2-1)) if n>=2k and n==k (mod 2).
O.g.f. for column k: x^k/(1-F(x^2)) + 2*x^(2*k)*(1 + F(x))/(1 - F(x^2))^2 where F(x)= x/(1-x).