cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239640 a(n) is the smallest number such that for n-bonacci constant c_n satisfies round(c_n^prime(m)) == 1 (mod 2*p_m) for every m>=a(n).

Original entry on oeis.org

3, 3, 4, 5, 7, 7, 10, 13, 14, 14, 19, 23, 23, 31, 34, 34, 46, 50, 60, 65, 73, 79, 88, 92, 107, 113, 126, 139, 149, 168, 182, 198, 210, 227, 244, 265, 276, 292, 317, 340, 369, 384, 408, 436, 444, 480, 516, 540, 565, 606, 628, 669, 704, 735, 759, 810, 829, 895, 925
Offset: 2

Views

Author

Keywords

Comments

The n-bonacci constant is a unique root x_1>1 of the equation x^n-x^(n-1)-...-x-1=0. So, for n=2 we have Fibonacci constant phi or golden ratio (A001622); for n=3 we have tribonacci constant (A058265); for n=4 we have tetranacci constant (A086088), for n=5 (A103814), for n=6 (A118427), etc.

Examples

			Let n=2, then c_2 = phi (Fibonacci constant). We have round(c_2^2)=3 is not == 1 (mod 4), round(c_2^3)=4 is not == 1 (mod 6), while round(c_2^5)=11 == 1 (mod 10) and one can prove that for p>=5, we have round(c_2^p) == 1 (mod 2*p). Since 5=prime(3), then a(2)=3.
		

Crossrefs