A239641 Dirichlet inverse of Carmichael lambda function (A002322).
1, -1, -2, -1, -4, 2, -6, 1, -2, 4, -10, 4, -12, 6, 12, -1, -16, 2, -18, 8, 18, 10, -22, -4, -4, 12, -2, 12, -28, -12, -30, -3, 30, 16, 36, 0, -36, 18, 36, -8, -40, -18, -42, 20, 4, 22, -46, 0, -6, 4, 48, 24, -52, 2, 60, -12, 54, 28, -58, -40, -60, 30, 18, -1, 84, -30, -66, 32, 66, -36, -70, 0
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
inverse[F_][1] := 1/F[1]; inverse[F_][n_] := -1/F[1] Sum[F[n/Divisors[n][[i]]]*inverse[F][Divisors[n][[i]]], {i, Length[Divisors[n]] - 1}];Table[inverse[CarmichaelLambda][n], {n, 1, 331}];
-
PARI
seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, lcm(znstar(n).cyc)))} \\ Andrew Howroyd, Aug 05 2018