A239666 a(n) = least number k such that n*k^n+1 is prime, or 0 if no such number exists.
1, 1, 4, 1, 8, 1, 4, 3, 10, 1, 42, 1, 60, 15, 22, 1, 8, 1, 198, 42, 10, 1, 8, 115, 34, 21, 0, 1, 54, 1, 130, 3, 4, 7, 72, 1, 778, 204, 30, 1, 108, 1, 178, 15, 14, 1, 924, 28, 234, 63, 1376, 1, 44, 3, 16, 27, 256, 1, 180, 1, 706, 51, 98, 0, 546, 1, 4, 153, 150, 1, 170
Offset: 1
Keywords
Examples
3*1^3+1 = 4 is not prime. 3*2^3+1 = 25 is not prime. 3*3^3+1 = 82 is not prime. 3*4^3+1 = 193 is prime. Thus, a(3) = 4.
Links
- William Dean, Table of n, a(n) for n = 1..1000
Programs
-
PARI
is_A097792(n)={my(p,t); n%4==0 && ispower(n\4, 4) || ((2 < p = ispower(n, , &t)) && if(isprime(p), t%p==0, foreach(factor(p)[, 1], q, q%2 && n%q==0 && return(1))))} a(n) = if(n!=4 && is_A097792(n), 0, for(k=1,oo,if(ispseudoprime(n*k^n+1),return(k)))); \\ [corrected by Andrew Howroyd, Oct 25 2024]
Comments