cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239666 a(n) = least number k such that n*k^n+1 is prime, or 0 if no such number exists.

Original entry on oeis.org

1, 1, 4, 1, 8, 1, 4, 3, 10, 1, 42, 1, 60, 15, 22, 1, 8, 1, 198, 42, 10, 1, 8, 115, 34, 21, 0, 1, 54, 1, 130, 3, 4, 7, 72, 1, 778, 204, 30, 1, 108, 1, 178, 15, 14, 1, 924, 28, 234, 63, 1376, 1, 44, 3, 16, 27, 256, 1, 180, 1, 706, 51, 98, 0, 546, 1, 4, 153, 150, 1, 170
Offset: 1

Views

Author

Derek Orr, Mar 29 2014

Keywords

Comments

a(n) = 1 iff n+1 is prime.
If a(n) = 0, then n is in A097792. Note that the converse is not true: a(4) = 1, not 0.
If n is in A097792 and n > 4, then a(n) = 0. For a sketch of this proof, either n = 4b^4 for some positive integer b > 2 or n = (bp)^p for some prime p > 2 and some positive integer b. In the first case, n*k^n+1 can be factored by Sophie Germain's identity into two trinomials where neither can equal 1 since b > 2, so n*k^n+1 must be composite. In the second case, (bpk^{b^p p^(p-1)}+1) is a factor of n*k^n+1 since p is odd. - William Dean, Oct 23 2024

Examples

			3*1^3+1 = 4 is not prime. 3*2^3+1 = 25 is not prime. 3*3^3+1 = 82 is not prime. 3*4^3+1 = 193 is prime. Thus, a(3) = 4.
		

Crossrefs

Programs

  • PARI
    is_A097792(n)={my(p,t); n%4==0 && ispower(n\4, 4) || ((2 < p = ispower(n, , &t)) && if(isprime(p), t%p==0, foreach(factor(p)[, 1], q, q%2 && n%q==0 && return(1))))}
    a(n) = if(n!=4 && is_A097792(n), 0, for(k=1,oo,if(ispseudoprime(n*k^n+1),return(k)))); \\ [corrected by Andrew Howroyd, Oct 25 2024]