A239686 Numbers n such that if n = a U b (where U denotes concatenation) then sigma*(a) + sigma*(b) = abs(sigma*(n) - n), where sigma*(n) is the sum of the anti-divisors of n.
47, 118, 205, 846, 898, 1219, 4181, 4236, 4701, 4929, 6014, 6516, 13276, 30445, 59956, 61916, 63216, 67314, 72066, 79554, 90674, 106316, 128998, 129179, 136816, 142486, 143396, 180448, 229914, 284894, 357841, 421318, 483286, 486721, 487618, 500218, 642445
Offset: 1
Examples
Anti-divisors of 4701 are 2, 6, 7, 17, 79, 119, 1343, 553, 3134 and their sum is 5260. Consider 4701 as 4 U 701. Anti-divisors of 4 is 3 and of 701 are 2, 3, 23, 61, 467 whose sum is 556. At the end we have that 5260 - 4701 = 559 = 3 + 556.
Programs
-
Maple
with(numtheory); T:=proc(t) local w, x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end: P:=proc(q) local a, b, c, d, f, g, i, j, k,n; for n from 1 to q do b:=T(n); k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2; for i from 1 to b-1 do c:=trunc(n/10^i); d:=n-c*10^i; if c>2 and d>2 then k:=0; j:=c; while j mod 2<>1 do k:=k+1; j:=j/2; od; f:=sigma(2*c+1)+sigma(2*c-1)+sigma(c/2^k)*2^(k+1)-6*c-2; k:=0; j:=d; while j mod 2<>1 do k:=k+1; j:=j/2; od; g:=sigma(2*d+1)+sigma(2*d-1)+sigma(d/2^k)*2^(k+1)-6*d-2; if f+g=a-n then print(n); break; fi; fi; od; od; end: P(10^9);
Comments