A239701 Least k > 0 such that q(n)+k is prime, where q(n) is the number of strict partitions of n.
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 5, 3, 1, 5, 3, 3, 8, 3, 5, 7, 2, 1, 1, 1, 11, 7, 7, 1, 9, 2, 5, 1, 13, 1, 4, 17, 1, 3, 7, 5, 5, 1, 7, 7, 1, 2, 1, 27, 19, 1, 1, 2, 11, 11, 3, 21, 3, 3, 3, 11, 11, 9, 17, 13, 20, 1, 1, 5, 7, 3, 17, 12
Offset: 0
Keywords
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..9999
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016. See Conjecture 4.1(i).
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, If[PrimeQ[PartitionsQ[n] + k], Return[k]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 19 2019 *)
Comments