A239708 Numbers of the form m = 2^i + 2^j, where i > j >= 0, such that m - 1 is prime.
3, 6, 12, 18, 20, 24, 48, 68, 72, 80, 132, 192, 258, 264, 272, 384, 1032, 1040, 1088, 1152, 1280, 2064, 2112, 4100, 4112, 4128, 4160, 5120, 6144, 8448, 16448, 20480, 32772, 32784, 32832, 33024, 33792, 65538, 65540, 65544, 65552, 65600, 66048, 73728, 81920, 262148, 262152, 262272, 262400, 263168, 266240, 294912, 524352, 528384, 786432
Offset: 1
Keywords
Examples
a(1) = 3, since 3 = 2^1 + 2^0. a(3) = 12, since 12 = 2^3 + 2^2.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..250
Programs
-
Python
from itertools import islice from sympy import isprime def A239708_gen(): # generator of terms yield (n:=3) while True: n = n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b if isprime(n-1): yield n A239708_list = list(islice(A239708_gen(),30)) # Chai Wah Wu, Mar 24 2025
-
Smalltalk
A239708 "Answers the n-th term of A239708. Usage: n A239708 Answer: a(n)" | a b i k m p q terms | terms := OrderedCollection new. b := 2. p := 1. k := 0. m := 0. [k < self] whileTrue: [m := m + 1. p := b * p. q := 1. i := 0. [i < m and: [k < self]] whileTrue: [i := i + 1. a := p + q. (a - 1) isPrime ifTrue: [k := k + 1. terms add: a]. q := b * q]]. ^terms at: self -----------------
-
Smalltalk
A239708inv "Answers a kind of inverse of A239708. Usage: n A239708inv Answer: max ( k | A239708(k) < n)" | k | k := 1. [k A239708 < self] whileTrue: [k := k + 1]. ^k - 1
Formula
A239703(a(n)) = 1.
Comments