A239713 Primes of the form m = 3^i + 3^j - 1, where i > j >= 0.
3, 11, 29, 83, 89, 107, 251, 269, 809, 971, 2213, 2267, 6563, 6569, 6803, 8747, 19709, 19763, 20411, 59051, 65609, 177173, 183707, 531521, 538001, 590489, 1594331, 1594403, 1595051, 1596509, 4782971, 4782977, 4783697, 14348909, 14349149, 14526053, 14880347
Offset: 1
Keywords
Examples
a(1) = 3, since 3 = 3^1 + 3^0 - 1 is prime. a(5) = 89, since 89 = 3^4 + 3^2 - 1 is prime.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..131 [a(123) corrected by _Georg Fischer_, Dec 22 2024]
Crossrefs
Programs
-
Maple
select(isprime, [seq(seq(3^i+3^j-1, j=0..i-1), i=1..25)])[]; # Alois P. Heinz, Dec 22 2024
-
Mathematica
Select[Flatten[Table[3^i + 3^j - 1, {i, 1, 25}, {j, 0, i - 1}]], PrimeQ] (* Jean-François Alcover, Mar 17 2025, after Alois P. Heinz *)
-
Smalltalk
A239713 "Answers the n-th term of A239713. Usage: n A239713 Answer: a(n)" | a b i j k p q terms | terms := OrderedCollection new. k := 0. b := 3. p := b. i := 1. [k < self] whileTrue: [j := 0. q := 1. [j < i and: [k < self]] whileTrue: [a := p + q - 1. a isPrime ifTrue: [k := k + 1. terms add: a]. q := b * q. j := j + 1]. i := i + 1. p := b * p]. ^terms at: self [by Hieronymus Fischer, Apr 14 2014] --------------------
-
Smalltalk
A239713 "Version 2: Answers the n-th term of A239713. Uses distinctPowersOf: b from A018900 Usage: n A239713 Answer: a(n)” | a k n terms | terms := OrderedCollection new. n := 1. k := 0. [k < self] whileTrue: [(a:= (n distinctPowersOf: 3) - 1) isPrime ifTrue: [k := k + 1. terms add: a]. n := n + 1]. ^terms at: self [by Hieronymus Fischer, Apr 22 2014] -----------
-
Smalltalk
A239713 "Version 3: Answer an array of the first n terms of A239713. Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712. Usage: n A239713 Answer: #(3 11 29 ... ) [a(1) ... a(n)]” ^self primesWhichAreDistinctPowersOf: 3 withOffset: -1 [by Hieronymus Fischer, Apr 22 2014]
Comments