A239718 Primes of the form m = 8^i + 8^j - 1, where i > j >= 0.
71, 4159, 32831, 262151, 266239, 294911, 2101247, 18874367, 134479871, 1073741831, 68721573887, 549755813951, 4398046515199, 4398046543871, 4398046773247, 4398063288319, 281474976711167, 281474976743423, 281474978807807, 281474993487871, 282024732524543
Offset: 1
Keywords
Examples
a(1) = 71, since 71 = 8^2 + 8^1 - 1 is prime. a(2) = 4159, since 4159 = 8^4 + 8^2 - 1 is prime.
Links
- Georg Fischer, Table of n, a(n) for n = 1..40 [First 35 terms from Hieronymus Fischer]
Crossrefs
Programs
-
Maple
select(isprime, [seq(seq(8^i+8^j-1, j=0..i-1), i=1..25)])[]; # Alois P. Heinz, Dec 22 2024
-
Smalltalk
A239718 "Answers an array of the first n terms of A239718. Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712. Usage: n A239718 Answer: #(71 4159 ... ) [a(1) ... a(n)]" ^self primesWhichAreDistinctPowersOf: 8 withOffset: -1
Comments