cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239718 Primes of the form m = 8^i + 8^j - 1, where i > j >= 0.

Original entry on oeis.org

71, 4159, 32831, 262151, 266239, 294911, 2101247, 18874367, 134479871, 1073741831, 68721573887, 549755813951, 4398046515199, 4398046543871, 4398046773247, 4398063288319, 281474976711167, 281474976743423, 281474978807807, 281474993487871, 282024732524543
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-8 representation of a term 8^i + 8^j - 1 has base-8 digital sum = 1 + 7*j == 1 (mod 7).
In base-8 representation the first terms are 107, 10077, 100077, 1000007, 1007777, 1077777, 10007777, 107777777, 1000777777, 10000000007, 1000007777777, 10000000000077, 100000000007777, ...
Numbers m that satisfy m = 8^i + 8^j - 1 with odd i and j are not terms. Example: 33279 = 8^5 + 8^3 - 1 = 3*11093.

Examples

			a(1) = 71, since 71 = 8^2 + 8^1 - 1 is prime.
a(2) = 4159, since 4159 = 8^4 + 8^2 - 1 is prime.
		

Crossrefs

Cf. A018900, A239709, A239712 (base 2), A239713 (base 3), A239714 (base 4), A239715 (base 5), A239716 (base 6), A239717 (base 7), A239719 (base 9), A239720 (base 10).

Programs

  • Maple
    select(isprime, [seq(seq(8^i+8^j-1, j=0..i-1), i=1..25)])[];  # Alois P. Heinz, Dec 22 2024
  • Smalltalk
    A239718
      "Answers an array of the first n terms of A239718.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
    Usage: n A239718
    Answer: #(71 4159 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 8 withOffset: -1