A239728 Perfect power but neither square nor cube.
32, 128, 243, 2048, 2187, 3125, 7776, 8192, 16807, 78125, 100000, 131072, 161051, 177147, 248832, 279936, 371293, 524288, 537824, 759375, 823543, 1419857, 1594323, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 8388608, 10000000, 11881376, 17210368
Offset: 1
Examples
279936 is included since 279936 = 6^7 is a power and this is not a square or a cube. 59049 = 9^5 not included since this is a square 243^2 = 59049. 32768 = 8^5 not included since this is a cube 32^3 = 32768.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
PARI
for(i=1, 2^25, if(gcd(ispower(i), 6) == 1, print(i)))
-
Python
from sympy import mobius, integer_nthroot def A239728(n): def f(x): return int(n+x-integer_nthroot(x,5)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(7,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 14 2024
Formula
GCD(A052409(a(n)), 6) = 1. - Reinhard Zumkeller, Mar 28 2014
Sum_{n>=1} 1/a(n) = 1 - zeta(2) - zeta(3) + zeta(6) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 0.0448164603... - Amiram Eldar, Dec 21 2020