cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239728 Perfect power but neither square nor cube.

Original entry on oeis.org

32, 128, 243, 2048, 2187, 3125, 7776, 8192, 16807, 78125, 100000, 131072, 161051, 177147, 248832, 279936, 371293, 524288, 537824, 759375, 823543, 1419857, 1594323, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 8388608, 10000000, 11881376, 17210368
Offset: 1

Views

Author

Jeppe Stig Nielsen, Mar 25 2014

Keywords

Examples

			279936 is included since 279936 = 6^7 is a power and this is not a square or a cube.
59049 = 9^5 not included since this is a square 243^2 = 59049.
32768 = 8^5 not included since this is a cube 32^3 = 32768.
		

Crossrefs

Cf. A001597 (perfect powers), A097054 (nonsquare perfect powers), A340585 (noncube perfect powers).

Programs

  • PARI
    for(i=1, 2^25, if(gcd(ispower(i), 6) == 1, print(i)))
    
  • Python
    from sympy import mobius, integer_nthroot
    def A239728(n):
        def f(x): return int(n+x-integer_nthroot(x,5)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(7,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

GCD(A052409(a(n)), 6) = 1. - Reinhard Zumkeller, Mar 28 2014
Sum_{n>=1} 1/a(n) = 1 - zeta(2) - zeta(3) + zeta(6) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 0.0448164603... - Amiram Eldar, Dec 21 2020