A239797 Decimal expansion of square root of 3 divided by cube root of 4.
1, 0, 9, 1, 1, 2, 3, 6, 3, 5, 9, 7, 1, 7, 2, 1, 4, 0, 3, 5, 6, 0, 0, 7, 2, 6, 1, 4, 1, 8, 9, 8, 0, 8, 8, 8, 1, 3, 2, 5, 8, 7, 3, 3, 3, 8, 7, 4, 0, 3, 0, 0, 9, 4, 0, 7, 0, 3, 6, 4, 1, 0, 7, 3, 2, 3, 6, 7, 8, 0, 1, 1, 0, 0, 5, 7, 2, 2, 3, 7, 4, 2, 0, 3, 3, 3, 3, 0, 0, 8, 3, 8, 2, 1, 7, 7
Offset: 1
Examples
1.0911236359717214...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- William Stein, Algebraic Number Theory, a Computational Approach, p. 69 (in the PDF), Example 6.1.1, or Discriminants and Norms chapter (HTML).
- Index entries for algebraic numbers, degree 6
Crossrefs
Cf. A235362.
Programs
-
Mathematica
RealDigits[Sqrt[3]/4^(1/3), 10, 100][[1]]
-
PARI
polrootsreal(16*x^6-27)[2] \\ Charles R Greathouse IV, Apr 14 2014
Formula
2^(1/3)/2 = 1/2^(2/3) = 1/4^(1/3).
(-2^(1/3)/2 + sqrt(-3)/4^(1/3))^3 = 2.
Equals Product_{n >= 1} 1/(1 - 1/(6*n - 2)^2 ). - Fred Daniel Kline, Dec 19 2015
Comments