cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239828 Cyclops numbers which are squares of cyclops numbers.

Original entry on oeis.org

0, 11025, 42025, 93025, 121308196, 121506529, 121903681, 122301481, 144408289, 144504441, 145106116, 145805625, 145902241, 169702729, 169806961, 171505216, 196308121, 196504324, 197205849, 197908624, 198105625, 198302724, 256608361, 256704484, 257409936
Offset: 1

Views

Author

Colin Barker, Mar 27 2014

Keywords

Comments

Subsequence of A160711.

Examples

			145106116 is in the sequence because 145106116 = 12046^2, and both 145106116 and 12046 are cyclops numbers.
		

Crossrefs

Programs

  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 100000, if(is_cyclops(n) && is_cyclops(n^2), s=concat(s, n^2))); s

Formula

a(n) = A239827(n)^2.

A286662 Numbers k such that k, k^2 and k^3 are cyclops numbers (A134808).

Original entry on oeis.org

0, 16075, 18039, 1130239, 1130363, 1130668, 1150474, 1220156, 1230423, 1250928, 1290628, 1330162, 1350478, 1390313, 1390989, 1510414, 1510712, 1530314, 1530461, 1530585, 1540896, 1540977, 1560186, 1560324, 1570341, 1580342, 1620244, 1620389, 1630871, 1650288
Offset: 1

Views

Author

Colin Barker, May 12 2017

Keywords

Comments

For k = 1130239, k^4 = 1631853457220539336688641 is also a cyclops number.

Examples

			16075 is in the sequence because k^2 = 258405625, k^3 = 4153870421875 and these three numbers are cyclops numbers.
		

Crossrefs

Programs

  • Mathematica
    cycQ[n_]:=DigitCount[n,10,0]==1&&OddQ[IntegerLength[n]]&& IntegerDigits[ n][[(IntegerLength[n]+1)/2]]==0; Join[{0},Table[Select[Range[ 10^n, 10^(n+1)-1],AllTrue[{#,#^2,#^3},cycQ]&],{n,2,6,2}]]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 25 2017 *)
  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    L=List(); for(n=0, 10000000, if(is_cyclops(n) && is_cyclops(n^2) && is_cyclops(n^3), listput(L, n))); Vec(L)
Showing 1-2 of 2 results.