cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239835 Number of partitions of n such that the absolute value of the difference between the number of odd parts and the number of even parts is <=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 15, 20, 26, 33, 44, 54, 71, 86, 113, 136, 175, 211, 268, 323, 403, 487, 601, 726, 885, 1068, 1292, 1556, 1867, 2244, 2678, 3208, 3809, 4547, 5379, 6398, 7542, 8937, 10506, 12404, 14542, 17110, 20011, 23465, 27381, 32006, 37267
Offset: 0

Views

Author

Clark Kimberling, Mar 29 2014

Keywords

Comments

Number of partitions of n having an ordering of parts in which no parts of equal parity are adjacent, as in Example.

Examples

			a(8) counts these 8 partitions:  8, 161, 521, 341, 4121, 323, 3212, 21212.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(abs(t)-n>1, 0,
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    p[n_] := p[n] = Select[IntegerPartitions[n], Abs[Count[#, ?OddQ] - Count[#, ?EvenQ]] <= 1 &]; t = Table[p[n], {n, 0, 10}]
    TableForm[t] (* shows the partitions *)
    Table[Length[p[n]], {n, 0, 60}] (* A239835 *)
    (* Peter J. C. Moses, Mar 10 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[Abs[t]-n>1, 0, If[n==0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)

Formula

a(n) = A045931(n) + A239833(n) for n >= 0.
a(n) = Sum_{k=-1..1} A240009(n,k). - Alois P. Heinz, Apr 01 2014